Skip to main content
Log in

Zum Mechanismus der nucleophilen Addition an 2,3-Dihydrodipyrrin-1(10H)-one

On the mechanism of the nucleophilic addition to 2,3-dihydrodipyrrin-1(10H)-ones

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

1H NMR-spectroscopic investigations of the acid catalyzed addition of methanol to dihydrodipyrrinones (Z)-2, (E)-2, and4 show the C-protonation of their enamide parts to be the first and rate determining step forming the key intermediate, the N-acyl-immonium ion N+. Its ability to add nucleophiles diastereoselectively can be used to prepare the adductsl-3 andl-5. Exclusive formation of thelike-isomer can be explained by a stereoelectronically favoured approach of the nucleophile and by the thermodynamically favoured arrangement of the bulky ring substituents. Both explanations are based on low temperature X-ray crystal structure determinations: in the first place, the orientation of the added nucleophile could be found to be nearly parallel to the π-plane of the lactam unit and quasi-axial with respect to theenvelope-like conformation of the five-ring lactam; in the second place, the relative orientation of the methoxycarbonyl-metyl-group at C-3 and the pyrrolylmethyl-substituent at C-4 could be found to be atrans-quasi-diequatorial one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Vor der Herausgabe der IUPAC-Empfehlungen zur Nomenklatur von Tetrapyrrolen in: Pure App Chem 59: 779 (1987), wurde diese Substanzklasse als 3,4-Dihydro-5(1H)-pyrromethenone bezeichnet

  2. Battersby AR, Fookes CJR, Snow RJ (1984) J Chem Soc Perkin Trans I 1984: 2733

    Google Scholar 

  3. Falk H, Grubmayr K, Kapl G, Zrunek U (1982) Monatsh Chem 113: 1329

    Google Scholar 

  4. Falk H, Zrunek U (1983) Monatsh Chem 114: 983

    Google Scholar 

  5. Grubmayr K (1982) Monatsh Chem 113: 1073

    Google Scholar 

  6. Gossauer A, Miehe D (1974) Liebigs Ann Chem 1974: 352

    Google Scholar 

  7. Gossauer A, Hirsch W (1974) Liebigs Ann Chem 1974: 1496

    Google Scholar 

  8. Sheldrick WS, Borkenstein A, Blacha-Puller M, Gossauer A (1977) Acta Cryst B 33: 3625

    Google Scholar 

  9. Grossauer A, Kühne G (1977) Liebigs Ann Chem 1977: 664

    Google Scholar 

  10. Gossauer A, Hinze R-P (1978) J Org Chem 43: 283

    Google Scholar 

  11. Gossauer A, Hinze R-P, Kutschan R (1981) Chem Ber 114: 132

    Google Scholar 

  12. Gossauer A, Blacha-Puller M (1981) Liebigs Ann Chem 1981: 1492

    Google Scholar 

  13. Gossauer A (1983) Tetrahedron 39: 1933

    Google Scholar 

  14. Onkenhout W, van Koeveringe JA, Lugtenburg J (1981) Recl Trav Chim Pays-Bas 100: 106

    Google Scholar 

  15. Koek JH, Lugtenburg J (1985) Recl Trav Chim Pays-Bas 104: 64

    Google Scholar 

  16. van Es JJGS, Koek JH, Erkelens C, Lugtenburg J (1986) Recl Trav Chim Pays-Bas 105: 360

    Google Scholar 

  17. Plieninger H, Preuss I (1983) Liebigs Ann Chem 1983: 585

    Google Scholar 

  18. Farrera JA, Ribó JM, Serra X, Trull FR (1986) Liebigs Ann Chem 1986: 1241

    Google Scholar 

  19. Claret J, Muller C, Ribó JM, Serra X (1985) Monatsh Chem 116: 681

    Google Scholar 

  20. Ribó JM, Serra X (1986) Monatsh Chem 117: 185

    Google Scholar 

  21. Grubmayr K, Kapl G (1988) Monatsh Chem 119: 605

    Google Scholar 

  22. Dunitz JD (1979) X-Ray analysis and structure of organic molecules. Cornell University Press, London

    Google Scholar 

  23. Cullen DL, Pèpe G, Meyer EF Jr, Falk H, Grubmayr K (1979) J Chem Soc Perkin Trans II 1979: 999

    Google Scholar 

  24. Cullen DL, Black PS, Meyer EF Jr, Lightner DA, Quistad GB, Pak CS (1977) Tetrahedron 33: 477

    Google Scholar 

  25. Krow GR, Pyun C, Leitz C, Marakowski J (1974) J Org Chem 39: 2449

    Google Scholar 

  26. Würthwein E-U, Kupfer R, Kaliba C (1983) Angew Chemie 95: 247

    Google Scholar 

  27. Shono T (1984) Tetrahedron 40: 811

    Google Scholar 

  28. Zaugg HE (1984) Synthesis 1984: 85

    Google Scholar 

  29. Zaugg HE (1984)Synthesis 1984: 181

    Google Scholar 

  30. Speckamp WN, Hiemstra H (1985) Tetrahedron 41: 4367

    Google Scholar 

  31. Weinreb S (1985) Acc Chem Res 18: 16

    Google Scholar 

  32. Grieco PA, Larsen SD, Fobare WF (1986) Tetrahedron Lett 27: 1975

    Google Scholar 

  33. Schoemaker HE, Speckamp WN (1978) Tetrahedron Lett 1978: 1515

    Google Scholar 

  34. Bürgi HB, Dunitz JD (1983) Acc Chem Res 16: 153

    Google Scholar 

  35. Ladner W (1983) Chem Ber 116: 3413

    Google Scholar 

  36. Seebach D, Aebi JD, Gander-Coquoz M, Naef R (1987) Helv Chim Acta 70: 1194

    Google Scholar 

  37. Wagner GU (1987) Dissertation, Karl-Franzens-Universität Graz, Graz

    Google Scholar 

  38. Kirby AJ (1983) The anomeric effect and related stereoelectronic effects at oxygen. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  39. Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon Press, Oxford (Organic chemistry series, Vol 1)

    Google Scholar 

  40. Grubmayr K, Wagner GU (1988) Monatsh Chem 119: 813

    Google Scholar 

  41. Allen FH, Kennard O, Taylor R (1983) Acc Chem Res 16: 146

    Google Scholar 

  42. Edmonds JW, Duax WL (1975) J Am Chem Soc 97: 413

    Google Scholar 

  43. Kratky C, Waditschatka R, Angst C, Johansen JE, Plaquevent JC, Schreiber J, Eschenmoser A (1985) Helv Chim Acta 68: 1312

    Google Scholar 

  44. Wray V, Gossauer A, Grüning B, Reifenstahl G, Zilch H (1979) J Chem Soc Perkin Trans II 1979: 1558

    Google Scholar 

  45. Falk H, Müller N, Vormayr G (1984) Org Magn Reson 22: 576

    Google Scholar 

  46. Falk H, Grubmayr K, Müller N, Vormayr G (1985) Monatsh Chem 116: 53

    Google Scholar 

  47. Hope H, Nichols BG (1981) Acta Cryst A 37: 158

    Google Scholar 

  48. German G, Main P, Woolfson MM (1971) Acta Cryst A 27: 368

    Google Scholar 

  49. Sheldrick GM (1976) Shelx 76, a program for crystal structure determination. University of Cambridge, England

    Google Scholar 

  50. Motherwell S (1976) Program Pluto. University of Cambridge, England

    Google Scholar 

  51. Johnson CK (1976) Ortep report ORNL 5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grubmayr, K., Wagner, U.G. Zum Mechanismus der nucleophilen Addition an 2,3-Dihydrodipyrrin-1(10H)-one. Monatsh Chem 119, 793–812 (1988). https://doi.org/10.1007/BF00809692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809692

Keywords

Navigation