Monatshefte für Chemie / Chemical Monthly

, Volume 120, Issue 1, pp 11–20 | Cite as

Mechano-elektrochemische Effekte, VI. Einfluß der Elektrodengeometrie auf Potentialverschiebungen bei der plastischen Deformation von Kupfer und Hinweise auf die Systemorganisationen

  • Viktor Gutmann
  • Gerhard Resch
  • Wolfgang Kantner
  • Wolfgang Linert
Anorganische Und Physikalische Chemie

Mechano-electrochemical effects, Part VI. Influence of electrode geometry on potential shifts in the course of plastic deformation of copper and considerations in terms of system organizations


Plastic deformation of a copper electrode in an aqueous 10−4M Cu(ClO4)2 solution leads to greater potential shifts, to smaller “post strain effects” and to greater relaxation rates as the ratio interfacial area: volume of copper is increased. It is suggested that its system organization is improved, as the interfacial area is increased. The system organization appears also to be improved as oxidic superstructures are developing at the interface, where the highest hierarchic levels of both electrode and electrolyte are in immediate contact. Further hints as to the system organization of the whole system Cu/CuSO4 solution are obtained from the fact that atpH=2 andcCu + +=10−1 mol/l the redox potential is independent of the pretreatment of the electrode and independent of the presence of oxidic superstructures. It is underlined that the passivity due to the presence of an oxidic superstructure is maintained only atpH >2, whereas at lowerpH-values copper is more readily dissolved. It is suggested that atpH=2 the system is in an optimal state of system organization (OSO), similar to those reported in the course of phase transformations, in extremely thin metal films and in solutions at the isokinetic temperature.


Electrolyte-electrode interactions Plastic deformation of copper in electrolytes Redox potentials Interface phenomena System organization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Mitt.: Kantner W., Gutmann V., Linert W. (1988) Monatsh. Chem.119: 661Google Scholar
  2. [2]
    Linert W., Stiglbrunner K., Gutmann V. (1984) Monatsh. Chem.115: 905Google Scholar
  3. [3]
    Linert W., Woronow V., Gutmann V. (1985) Monatsh. Chem.116: 1263Google Scholar
  4. [4]
    Gutmann V., Kantner W., Linert W. (1986) Monatsh. Chem.117: 739Google Scholar
  5. [5]
    Kantner W., Gutmann V., Linert W. (1988) Monatsh. Chem.119: 649Google Scholar
  6. [6]
    Gutmann V., Resch G. (1981) Acta Chim. Hung.106: 115Google Scholar
  7. [7]
    Resch G., Gutmann V. (1980) Z. Phys. Chem. (nF)121: 211; Resch G., Gutmann V. (1981) Z. Phys. Chem. (nF)126: 223Google Scholar
  8. [8]
    Resch G., Gutmann V. (1987) Wissenschaftliche Grundlagen der Homöopathie, 2. Aufl. O-Verlag, Berg am Starnberger See; englische Ausgabe: Resch G., Gutmann V. (1987) Scientific Foundations of Homoeopathy. Barthel and Barthel, Berg am Starnberger SeeGoogle Scholar
  9. [9]
    Gutmann V., Resch G. (1988) In: Grobet P. J., et al. (eds.) Innovationin Zeolite Materials Science. Elsevier, Amsterdam, p. 239.Google Scholar
  10. [10]
    Gutmann V., Resch G. (1988) Chem. Int.10: 5Google Scholar
  11. [11]
    Yates J. T., King D. A. (1972) Surface Sci.30: 601Google Scholar
  12. [12]
    Ertl G. (1977) J. Vac. Sci. Techn.14: 435Google Scholar
  13. [13]
    Ertl G., Koch J. (1970) Z. Naturf.25 a: 1906Google Scholar
  14. [14]
    Conrad H., Ertl G., Küppers J., Latta E. E. (1967) Surface Sci.57: 475Google Scholar
  15. [15]
    Murr L. E. (1975) Interface Phenomena in Metals and Alloys. Addison-Wesley, ReadingGoogle Scholar
  16. [16]
    Chopra K. L. (1969) Thin Film Phenomena. McGraw-Hill, New YorkGoogle Scholar
  17. [17]
    Gutmann V., Resch G. (1981) Pure Appl. Chem.53: 1447Google Scholar
  18. [18]
    Resch G., Gutmann V. (1981) In: Bertini I., et al. (eds.) Advances in Solution Chemistry. Plenum Press, New York, p. 1Google Scholar
  19. [19]
    Gutmann V., Resch G., Kratz R., Schauer H. (1982) Z. Anorg. Chem.491: 95; Gutmann V., Resch G., Kratz R., Schauer H. (1984) Monatsh. Chem.115: 559Google Scholar
  20. [20]
    Bewick A. (1983) J. Electroanal. Chem.150: 481; Bewick A. (1986) In: Silva A. F. (ed.) Trends in Interfacial Electrochemistry. Reidel, DordrechtGoogle Scholar
  21. [21]
    Neckel A. (1984) Fresenius' Z. Anal. Chem.319: 682; Neckel A. (1987) Mikrochim. Acta [Wien]III: 263Google Scholar
  22. [22]
    Kellner R., Neugebauer H., Nauer G., Neckel A. (1985) SPIE553: 12Google Scholar
  23. [23]
    Christmann K. (1987) Z. Phys. Chem. (nF)154: 145Google Scholar
  24. [24]
    Gutmann V., Resch G. (1983) Inorg. Chim. Acta72: 269Google Scholar
  25. [25]
    Gutmann V., Resch G. (1983) Monatsh. Chem.114: 839Google Scholar
  26. [26]
    Gutmann V., Resch G. (1985) Monatsh. Chem.116: 1107Google Scholar
  27. [27]
    Gutmann V., Scheiber E., Resch G. (1989) Monatsh. Chem. (im Druck)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Viktor Gutmann
    • 1
  • Gerhard Resch
    • 1
  • Wolfgang Kantner
    • 1
  • Wolfgang Linert
    • 1
  1. 1.Institut für Anorganische ChemieTechnische Universität WienWienÖsterreich

Personalised recommendations