Skip to main content
Log in

Diisophorone and related compounds. Part 15 2,7-Epoxydiisophoranes: Oxirane cleavage byGrignard reagents

Diisophoron und verwandte Verbindungen. 15. Mitt. 2,7-Epoxydiisophorane: Oxiranspaltung mittelsGrignard-Verbindungen

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Grignard reagents cleave the oxirane ring of 2,7-epoxydiisophoran-1-ol producing diisophor-7-ene-1,2-diol, the formulation of which is in accord with its13C-nmr spectrum, and its further reactions. It yields a 1,2-cyclic sulphite ester, a 7,8-epoxide, and is converted into 1-acetoxydiisophora-2,7-diene by acetic anhydride, and into diisophor-2(7)-en-1-ol by successive dehydration and hydrogenation. Its allylic hydroxylation by selenium dioxide is attended by dehydration, producing moderate yields of diisophora-2,7-diene-1,6-diol.

Zusammenfassung

2,7-Epoxydiisophoran-1-ol wird vonGrignard-Verbindungen unter Spaltung des Oxiranringes in Diisophor-7-en-1,2-diol umgewandelt, dessen Struktur durch sein13C-Kernresonanz-Spektrum und seine weiteren Umsetzungen bewiesen wird: Es bildet einen cyklischen 1,2-Sulphit-Ester, ein 7,8-Epoxyd, und wird von Essigsäureanhydrid in 1-Acetoxydiisophora-2,7-dien sowie durch aufeinanderfolgende Wasserabspaltung und katalytische Hydrierung in Diisophor-2(7)-en-1-ol umgewandelt. Hydroxylierung in Allyl-Stellung durch Selendioxyd ergibt unter gleichzeitiger Wasserabspaltung geringe Ausbeuten von Diisophora-2,7-dien-1,6-diol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Part 14:Kurzer F., Patel J. N., Monatsh. Chem.115, 825 (1984).

    Google Scholar 

  2. Allen A. A., Kurzer F., Tetrahedron34, 1261 (1978).

    Google Scholar 

  3. Allen A. A.,Kurzer F.,Morgan A. R., J.C.S. Perkin I1980, 733.

  4. Allen A. A., Duffner R. C., Kurzer F., Tetrahedron34, 1247 (1978).

    Google Scholar 

  5. Rosowsky A., in: Heterocyclic Compounds with Three or Four Membered Rings (Weissberger A., ed.), Part I, p. 394. New York: Interscience. 1964.Winstein S., Henderson R. B., in: Heterocyclic Compounds (Elderfield R. C., ed.), Vol. I, p. 1. New York: Wiley. 1950.

    Google Scholar 

  6. Phillips J. G., Parker V. D., in: Steroid Reactions (Djerassi C., ed.), p. 631. San Francisco: Holden Day. 1963.

    Google Scholar 

  7. Kharasch M. S., Reinmuth O., Grignard Reactions of Non-metallic Substances, p. 181. New York: Prentice-Hall. 1954.

    Google Scholar 

  8. Gaylord N. G., Becker E. I., Chem. Rev.49, 413 (1951).

    Google Scholar 

  9. Bladon P.,Henbest H. B.,Wood G. W., J. Chem. Soc.1952, 2737.

  10. Fieser L. F., Okumura Y., J. Org. Chem.27, 2247 (1962);Okumura Y., ibid.28, 1075 (1963).

    Google Scholar 

  11. Dannenberg H., Abhandl. Preuss. Akad. Wiss.21, 3 (1939);Woodward R. B., J. Amer. Chem. Soc.63, 1123 (1941), ibid.64, 76 (1942);Dorfman L., Chem. Rev.53, 47 (1953);Fieser L. F., Fieser M., Steroids, pp. 15–21. New York: Reinhold. 1959.

    Google Scholar 

  12. Carlin R. B., Constantine D. A., J. Amer. Chem. Soc.69, 50 (1947).

    Google Scholar 

  13. Kabas G., Rutz H. C., Tetrahedron22, 1219 (1966).

    Google Scholar 

  14. Furth B.,Kossanyi J.,Morizur J. P.,Vandewalle M., Bull. Soc. chim. France1967, 1428.

  15. Guillemonat A., Ann. chim.11, 143 (1939);Wiberg K. B., Nielsen S. D., J. Org. Chem.29, 3353 (1964).

    Google Scholar 

  16. Davies P. R., Kurzer F., Morgan A. R., Monatsh. Chem.111, 1097 (1980).

    Google Scholar 

  17. Schlenk W., Schlenk Jr. W., Ber. Dtsch. Chem. Ges.62, 920 (1929);Schlenk Jr. W., ibid.64, 734, 736 (1931).

    Google Scholar 

  18. Blaise E. E., Compt. rend.134, 551 (1902).

    Google Scholar 

  19. Newth F. H., Quart. Rev.13, 30 (1959).

    Google Scholar 

  20. Kirchhof W., Chem. Ber.93, 2712 (1960).

    Google Scholar 

  21. Davies P. R., Morgan A. R., Kurzer F., Monatsh. Chem.114, 739 (1983).

    Google Scholar 

  22. Wehrli F. W., Wirthlin T., Interpretation of Carbon-13 NMR Spectra. London: Heyden & Son Ltd. 1976. Chart at end: Range for -CH=, 113–144 ppm, centred at 129 ppm.

    Google Scholar 

  23. Johnson L. F., Jankowski W. C., Carbon 13 NMR Spectra. A Collection of Assigned Coded and Indexed Spectra. New York: Wiley-Interscience. 1972. (a) Chemical shift of -CH= in 4-methylcyclohexene, 126.6 ppm. (b) Range for cyclohexanols (Compounds 191, 267, 271, 272, 360) 67–76 ppm.

    Google Scholar 

  24. Roberts J. D., Weigert F. J., Kroschwitz J. I., Reich H. J., J. Amer. Chem. Soc.92, 1338 (1970).

    Google Scholar 

  25. Adams R., Voorhees V., Shriner R. L., Org. Synth., Coll. Vol. 1, p. 463. New York: Wiley. 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, A.A., Kurzer, F. Diisophorone and related compounds. Part 15 2,7-Epoxydiisophoranes: Oxirane cleavage byGrignard reagents. Monatsh Chem 116, 777–787 (1985). https://doi.org/10.1007/BF00809155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809155

Keywords

Navigation