Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 5, pp 679–689 | Cite as

Dicyclohexylcarbodiimide as inducer of mitochondrial Ca2+ release

  • Edmundo Chávez
  • Cecilia Zazueta
  • Enrique Díaz
Research Articles

Abstract

The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 µM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with anMr of 20 to 29 kDa.

Key Words

Dicylcohexylcarbodiimide: DCCD: Ca2+ release Kidney mitochondria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerman, K. E. O., and Wikström, M. F. K. (1976).FEBS Lett. 68, 191–197.Google Scholar
  2. Akerman, K. E. O., and Nicholls, D. G. (1983).Rev. Physiol. Biochem. Pharmacol. 95, 149–201.Google Scholar
  3. Asimakis, G. K., and Sordahl, L. A. (1977).Arch. Biochem. Biophys. 179, 200–210.Google Scholar
  4. Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R. (1980).J. Biol. Chem. 255, 8663–8671.Google Scholar
  5. Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1984).J. Biol. Chem. 259, 1279–1287.Google Scholar
  6. Beattie, D. S., and Villalobo, A. (1982).J. Biol. Chem. 257, 14745–14752.Google Scholar
  7. Beavis, A. D., and Garlid, K. D. (1988).J. Biol. Chem. 263, 7574–7580.Google Scholar
  8. Beechey, R. B., Holloway, C. T., Knight, I. G., and Roberton, A. M. (1966).Biochem. Biophys. Res. Commun. 23, 75–80.Google Scholar
  9. Bellomo, G., Jewell, S. A., Thor, H., and Orrenius, S. (1982).Proc. Natl. Acad. Sci. USA 79, 6842–6846.Google Scholar
  10. Broekemeir, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989).J. Biol. Chem. 264, 7825–7830.Google Scholar
  11. Carafoli, E. (1987).Annu. Rev. Biochem. 56, 395–433.Google Scholar
  12. Casey, R. P., Thelen, M., and Azzi, A. (1979).Biochem. Biophys. Res. Commun. 87, 1044–1051.Google Scholar
  13. Chávez, E., and Jay, D. (1987).J. Bioenerg. Biomembr. 19, 571–580.Google Scholar
  14. Chávez, E., and Holguín, J. A. (1988).J. Biol. Chem. 263, 3582–3587.Google Scholar
  15. Chávez, E., and Osornio, A. (1988).Int. J. Biochem. 20, 731–736.Google Scholar
  16. Chávez, E., Briones, R., Michel, B., Bravo, C., and Jay, D. (1985).Arch. Biochem. Biophys. 242, 493–497.Google Scholar
  17. Chávez, E., Jay, D., and Bravo, C. (1987).J. Bioenerg. Biomembr. 19, 285–295.Google Scholar
  18. Chávez, E., Zazueta, C., Díaz, E., and Holguín, J. A. (1989).Biochim. Biophys. Acta 986, 27–32.Google Scholar
  19. Chudapongse, P., and Haugaard, N. (1973).Biochim. Biophys. Acta 307, 599–603.Google Scholar
  20. Coelho, J. L. and Vercesi, A. E. (1980).Arch. Biochem. Biophys. 204, 141–147.Google Scholar
  21. Compton, M., Moser, R., Lüdi, H., and Carafoldi, E. (1978).Eur. J. Biochem. 82, 25–31.Google Scholar
  22. Fonyo, A., and Bessman, S. P. (1968).Biochem. Med. 2, 145–163.Google Scholar
  23. Kapoor, S. C., and van Rossum, G. D. V. (1984).Biochem. Pharmacol. 33, 1771–1778.Google Scholar
  24. Katre, N. V., and Wilson, D. F. (1978).Arch. Biochem. Biophys. 191, 647–656.Google Scholar
  25. Kendrich, N. C. (1976).Ann. Biochem. 76, 487–501.Google Scholar
  26. Lehninger, A. L., Vercesi, A., and Babanunmi, E. (1978).Proc. Natl. Acad. Sci. USA 75, 1690–1694.Google Scholar
  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.Google Scholar
  28. Martin, W. H., Beavis, A. D., and Garlid, K. D. (1984).J. Biol. Chem. 258, 2062–2065.Google Scholar
  29. Martin, W. H., DiResta, D. J., and Garlid, K. D. (1986).J. Biol. Chem. 261, 12300–12305.Google Scholar
  30. Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256, 6742–6750.Google Scholar
  31. Peng, C. F., Price, D. W., Bhuvaneswaran, C., and Wadkins, C. L. (1974).Biochem. Biophys. Res. Commun. 56, 134–141.Google Scholar
  32. Phelps, D. C., and Hatefi, Y. (1981).J. Biol. Chem. 256, 8217–8221.Google Scholar
  33. Rossi, C. S., and Lehninger, A. L. (1964).J. Biol. Chem. 239, 3971–3980.Google Scholar
  34. Sul, H. S., Shrago, E., and Shug, A. L. (1976).Arch. Biochem. Biophys. 172, 230–237.Google Scholar
  35. Vercesi, A. E. (1987).Arch. Biochem. Biophys. 252, 171–178.Google Scholar
  36. Wolkowicz, P. E., and McMillin-Wood, J. (1980).Biochem. J. 186, 257–266.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Edmundo Chávez
    • 1
  • Cecilia Zazueta
    • 1
  • Enrique Díaz
    • 1
  1. 1.Departamento de Bioquímica, Instituto Nacional de CardiologíaIgnacio ChávezMexico, D. F.Mexico

Personalised recommendations