Journal of Materials Science

, Volume 17, Issue 1, pp 277–289 | Cite as

Fatigue behaviour of metallic fibre-reinforced materials: a study of steel fibre-reinforced silver

Part 2 Failure mechanisms and high-cycle fatigue life
  • G. Rosenkranz
  • V. Gerold
  • K. Kromp
  • D. Stöckel
  • L. Tillmann


Fatigue damage and crack propagation modes in composites with unidirectionally aligned fibres may be affected by several variables such as fibre and matrix strength, fibre—matrix interfacial bonding and possible fluctuations in the strength of the reinforcing fibres. The influence of the different parameters on the behaviour of metallic fibre-reinforced materials was investigated up to 108 cycles in a model compound of steel-fibre-reinforced silver. The fatigue tests were carried out at a frequency of 20 kHz using an ultrasonic equipment. Two fundamentally different failure mechanisms and several transitional modes have been observed: (a) failure by nucleation and propagation, usually of one matrix fatigue crack, with simultaneous failure of the reinforcing fibres, (b) failure by gradual accumulation of matrix and interface fatigue damage and fibre-inhibited propagation of the final fatigue crack. The occurrence of both mechanisms depends mainly on the development of the local stress conditions when a matrix fatigue crack is approaching a fibre. This is discussed in terms of a simple model. Additionally, the effect of the failure mechanism on fatigue life and on the design of an appropriate failure criterion is considered.


Fatigue Fatigue Crack Failure Mechanism Fatigue Life Fatigue Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Rosenkranz, V. Gerold, D. Stöckel andL. Tillmann,J. Mater. Sci. 17 (1981) 264.Google Scholar
  2. 2.
    W. Kromp, K. Kromp, H. Bitt, H. Langer andB. Weiss, in “Ultrasonics International 1973”, Conference Proceedings (Science and Technology Press, Guildford, Surrey, 1973) p. 238.Google Scholar
  3. 3.
    L. E. Willertz,Int. Met. Rev. 2 (1980) 65.Google Scholar
  4. 4.
    G. Rosenkranz, D. Stöckel andL. Tillmann,Metall 30 (1976) 645.Google Scholar
  5. 5.
    Idem, J. Mater. Technol. Test. 7 (1976) 317.Google Scholar
  6. 6.
    G. A. Cooper,J. Mater. Sci. 5 (1970) 645.Google Scholar
  7. 7.
    G. D. Menke andI. J. Toth, “Time Dependent Mechanical Behaviour of Composite Materials”, AFML-TR-71-102.Google Scholar
  8. 8.
    G. Rosenkranz, Thesis, Universität Stuttgart, FRG (1979).Google Scholar
  9. 9.
    B. Harris andS. V. Ramani,J. Mater. Sci. 10 (1975) 83.Google Scholar
  10. 10.
    P. Tautzenberger, L. Tillmann andD. Stöckel,Metall 32 (1978) 665.Google Scholar
  11. 11.
    G. I. Dvorak andI. Q. Tarn, in “Fatigue of Composite Materials”, ASTM STP569 (1975) p. 145.Google Scholar
  12. 12.
    H. J. Weiss,J. Mater. Sci. 13 (1978) 1388.Google Scholar
  13. 13.
    G. Rosenkranz,J. Mater. Technol. Test. 12 (1981) 289.Google Scholar
  14. 14.
    J. R. Hancock, in “Composite Materials” Vol. 5: “Fracture and Fatigue”, edited by L. J. Broutman, (Academic Press, New York, 1974) p. 371.Google Scholar
  15. 15.
    M. J. Salkind, in “Composite Materials' Testing and design”, ASTM STP497 (1972) p. 143.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • G. Rosenkranz
    • 1
    • 2
  • V. Gerold
    • 1
    • 2
  • K. Kromp
    • 3
  • D. Stöckel
    • 4
  • L. Tillmann
    • 4
  1. 1.Max-Planck-Institut für MetallforschungInstitut für WerkstoffwissenschaftenFederal Republic of Germany
  2. 2.Institut für MetallkundeUniversität StuttgartFederal Republic of Germany
  3. 3.University of ViennaAustria
  4. 4.G. Rau, PforzheimFederal Republic of Germany

Personalised recommendations