Journal of Materials Science

, Volume 17, Issue 1, pp 183–192 | Cite as

Ultrasonic velocities and thermal expansion coefficients of amorphous Se80Te20 and Se90Te10 alloys near glass transitions

  • S. T. Lakshmikumar
  • V. C. Padaki
  • P. P. Krishnapur
  • S. V. Subramanyam
  • R. M. Mallya
  • E. S. R. Gopal


Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,α, are measured using a three-terminal capacitance bridge. Theα-values show a sharp maximum near the glass transition temperature,Tg. The ultrasonic velocities also show a large temperature derivative, dV/dT nearTg. The data are discussed in terms of existing theories of the glass transition. The continuous change inα shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearTg. The ultrasonic velocities and dV/dT have contributions arising from this deformation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Chen,Rep. Prog. Phys. 43 (1980) 353.Google Scholar
  2. 2.
    M. Cohen andD. Turnbull,J. Chem. Phys. 31 (1959) 1164.Google Scholar
  3. 3.
    M. Cohen andG. S. Grest,Phys. Rev. B 20 (1979) 1077.Google Scholar
  4. 4.
    J. H. Gibbs andE. A. DeMarzio,J. Chem. Phys. 28 (1958) 373.Google Scholar
  5. 5.
    D. Turnbull andG. N. Bagley, in “Treatise on Solid State Chemistry” Vol. 5, edited by N. B. Hannay (Plenum Press, New York, 1975) p. 513.Google Scholar
  6. 6.
    C. A. Angell, L. O. Pollard andW. Strauss,J. Chem. Phys. 50 (1969) 2964.Google Scholar
  7. 7.
    C. A. Angell andD. Sichina,Ann. Rev. New York Acad. Sci. 279 (1976) 53.Google Scholar
  8. 8.
    A. H. Abou El Ela, M. K. Elmously andK. S. Abdu,J. Mater. Sci. 15 (1980) 871.Google Scholar
  9. 9.
    K. R. Srinivasan, R. Krishnan, A. Sivaraman, N. Nagarajan, J. Ramakrishnan andE. S. R. Gopal, Proceedings of the Sumposium on Transducer Technology, Cochin, India, September 1975, (Department of Atomic Energy, India) p. 283.Google Scholar
  10. 10.
    H. J. McSkimin,J. Acoust. Soc. Amer. 33 (1961) 12.Google Scholar
  11. 11.
    H. J. McSkimin andP. Andreatch,ibid. 41 (1967) 1052.Google Scholar
  12. 12.
    P. P. Krishnapur, M. V. Lele andS. V. Subramanyam,Ind. J. Cryog. to be published.Google Scholar
  13. 13.
    P. P. Krishnapur, PhD Thesis, Indian Institute of Science (1981).Google Scholar
  14. 14.
    M. Lasocka,J. Mater. Sci. 15 (1980) 1283.Google Scholar
  15. 15.
    L. Landau andI. M. Lifshitz, “Theory of Elasticity” (Pergamon Press, Oxford and New York, 1959) p. 130.Google Scholar
  16. 16.
    E. Kittinger,Z. Naturforsch A 32A (1977) 946.Google Scholar
  17. 17.
    B. C. Giesen andC. N. J. Wagner, “Physics and Chemistry of Liquid Metals” edited by S. Z. Beer (Marcel Dekker, New York, 1972) p. 633.Google Scholar
  18. 18.
    J. E. Shelby,J. Non Cryst. Sol. 34 (1979) 111.Google Scholar
  19. 19.
    E. Kittinger,Phys. Stat. Sol. (a)44 (1977) K35.Google Scholar
  20. 20.
    S. Glasstone, “Text book of Physical Chemistry” (D. Van Nostrand, London, 1940) p. 496.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • S. T. Lakshmikumar
    • 1
  • V. C. Padaki
    • 1
  • P. P. Krishnapur
    • 1
  • S. V. Subramanyam
    • 1
  • R. M. Mallya
    • 1
    • 2
  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations