Monatshefte für Chemie / Chemical Monthly

, Volume 121, Issue 11, pp 909–921 | Cite as

Application of organolithium and related reagents in synthesis, part VI. A general study of the lithiation of secondary picoline- and isonicotine amides

  • Jan Epsztajn
  • Andrzej Jóźwiak
  • Krzysztof Czech
  • Aleksandra K. Szcześniak
Organische Chemie Und Biochemie

Summary

The lithiation of secondary picoline- (1) and isonicotine-amides (2) and the subsequent reaction of the corresponding (N- and 3-)lithiated amides (3 and4) with N,N-dimethylbenzamide towards the synthesis of the C3-benzoylated picoline (12 a) and isonicotine acids (13 a) has been investigated. The effect of the N-substituent upon the generation of the lithiated amides3 and4 has been studied. As a result it was found that the anilide function should be considered the best choice for direct metallation of the masked picoline- and isonicotinecarboxylic acids. The effects at various temperatures upon the generation of the lithiated reactive intermediates and the problems concerning their reactions with an acid (deuteriation) and an carbonyl electrophile are discussed.

Keywords

Secondary picoline- and isonicotine amides Lithiation Lithiated reactive intermediates — dual behaviour Protonation Benzoylation 

Anwendungen von Organolithium und verwandten Reagenzien in organischen Synthesen, Teil VI. Zur Metallierung von sekundären Picolinsäure- und Isonicotinsäureamiden

Zusammenfassung

Die Metallierung sekundärer Amide von Picolin- (1) und Isonicotinsäure (2) und nachfolgende Reaktion der entsprechenden (N- und 3-)metallierten Amide3 und4 mit N,N-Dimethylbenzamid — zur Synthese von C3-benzoylierten Picolin- (12 a) und Isonicotinsäuren (13 a) — wurde untersucht. Der Einfluß des N-Substituenten auf die Bildung der metallierten Amide3 and4 wurde studiert und dabei festgestellt, daß der Anilidrest für eine direkte Metallierung der maskierten Picolin- und Isonicotinsäure gut geeignet ist. Der beobachtete Einfluß des Substituenten bei verschiedenen Temperaturen bei Bildung der metallierten Spezies und die Probleme ihrer Reaktivität gegen Säuren (MeOD) und Carbonyl-Elektrophilen wurden diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Part V: Epsztajn J., Bieniek A., Płotka M. W. (1986) J. Chem. Res. (S): 20Google Scholar
  2. [2]
    Stechell K. D. R., Lawson A. M., Mitchell F. L., Aldercreutz H., Kirk D. N., Axelson M. (1980) Nature288: 740; Thurston L. S., Irie H., Tani S., Han F.-S., Liu Z.-Ch., Cheng Y.-Ch., Lee K.-H. (1986) J. Med. Chem.29: 1547Google Scholar
  3. [3]
    Parham W. E., Bradsher Ch. K., Edgar K. J. (1981) J. Org. Chem.46: 1057Google Scholar
  4. [4]
    Puterbough W. H., Hauser C. R. (1964) J. Org. Chem.29: 853Google Scholar
  5. [5]
    Wakefield B. J. (1974) The Chemistry of Organolithium Compounds. Pergamon Press, OxfordGoogle Scholar
  6. [6]
    Gschwend H. W., Rodriguez H. R. (1979) Org. React.26: 1Google Scholar
  7. [7]
    Beak P., Tse A., Howkins J., Chen Ch.-W., Mills S. (1983) Tetrahedron39: 1983Google Scholar
  8. [8]
    Beak P., Snieckus V. (1982) Acc. Chem. Res.10: 306Google Scholar
  9. [9]
    Narasimhan N. S., Mali R. S. (1983) Synthesis: 957Google Scholar
  10. [10]
    Klumpp G. W. (1986) Recl. Trav. Chim. Pays-Bas105: 1; Jayasuria K., Iyer S. (1988) Int. J. Quantum Chem.34: 199Google Scholar
  11. [11]
    Beak P., Meyers A. I. (1986) Acc. Chem. Res.19: 356Google Scholar
  12. [12]
    Seebach D., Hässig R., Gabriel J. (1983) Helv. Chim. Acta66: 308Google Scholar
  13. [13]
    McGarrity J. F., Ogle C. A. (1985) J. Am. Chem. Soc.107: 1805; McGarrity J. F., Ogle C. A., Birch Z., Loosli H.-R. (1985) J. Am. Chem. Soc.107: 1810Google Scholar
  14. [14]
    Unpublished results from this laboratoryGoogle Scholar
  15. [15]
    Fraser R. R., Bresse M., Monsour T. S. (1983) J. Am. Chem. Soc.105: 7790Google Scholar
  16. [16]
    Macdonald J. E., Poindexter G. S. (1987) Tetrahedron Lett.: 1851Google Scholar
  17. [17]
    Snieckus V. (1984) Lect. Heterocycl. Chem. (Castle R. N., ed.), J. Heterocycl. Chem.7: 95Google Scholar
  18. [18]
    Mills R. S., Snieckus V. (1983) J. Org. Chem.48: 1565Google Scholar
  19. [19]
    Meyers A. I., Gable R. A. (1978) Tetrahedron Lett.: 227Google Scholar
  20. [20]
    Katritzky A. R., Rahimi-Rastgo S., Pankshe N. R. (1981) Synthesis: 127Google Scholar
  21. [21]
    Meyers A. I., Gable R. A. (1982) J. Org. Chem.47: 2633Google Scholar
  22. [22]
    Turner J. A. (1983) J. Org. Chem.48: 3401Google Scholar
  23. [23]
    Epsztajn J., Bieniek A., Brzeźiński J. Z., Jóźwiak A. (1983) Tetrahedron Lett.: 4735Google Scholar
  24. [24]
    Kelly J. R., Echavaren A., Chandrakumar N. S., Köksai Y. (1984) Tetrahedron Lett.: 2127Google Scholar
  25. [25]
    Croisy-Delcey M., Bisagni E. (1984) J. Chem. Soc., Chem. Commun.: 397Google Scholar
  26. [26]
    Miah M. A. J., Snieckus V. (1985) J. Org. Chem.50: 5436Google Scholar
  27. [27]
    Jacquelin J. M., Marsais F., Godar A., Queguiner G. (1986) Synthesis: 670Google Scholar
  28. [28]
    Bisagni E., Rauturen M. (1987) Synthesis: 142Google Scholar
  29. [29]
    Comins D. L., LeMunyon D. H. (1988) Tetrahedron Lett.: 773Google Scholar
  30. [30]
    Smith K., Lindsay C. M., Morris J. K. (1988) Chem. Ind. (London): 302Google Scholar
  31. [31]
    Trecourt F., Mallet M., Marsais F., Queguiner G. (1988) J. Org. Chem.53: 1367Google Scholar
  32. [32]
    Jacquelin J. M., Robin Y., Godar R., Queguiner G. (1988) Can. J. Chem.66: 1135Google Scholar
  33. [33]
    Croisy-Delcey M., Carrez D., Bisagni E. (1988) Eur. J. Med. Chem.-Chim. Theor.23: 101Google Scholar
  34. [34]
    Hauck A. E., Giam C. S. (1980) J. Chem Soc., Perkin Trans.1: 2070; Gamal E. D., Knaus E. E., Giam C. S. (1982) Can. J. Chem.60: 1821; Meyers A. I., Natale R. N. (1981) Tetrahedron Lett.: 5123; Natale R. N., Meyers A. I. (1982) Heterocycles18: 13; Hauck A. E., Giam C. S. (1984) J. Chem. Soc., Perkin Trans.1: 2227; Dubay S. K., Knaus E. E., Giam C. S. (1984) Heterocycles22: 1091Google Scholar
  35. [35]
    Tamura Y., Fujita M., Chen L.-Ch., Inoue M., Kita Y. (1981) J. Org. Chem.46: 3564Google Scholar
  36. [36]
    Marsais F., le Nord G., Queguiner G. (1982) Synthesis: 235Google Scholar
  37. [37]
    Winkler M. R., Ronald R. C. (1982) J. Org. Chem.47: 2101Google Scholar
  38. [38]
    Gűngőr T., Marsais F., Queguiner G. (1982) Synthesis: 499Google Scholar
  39. [39]
    Tamura Y., Chen L.-Ch., Fujita M., Kita Y. (1982) Chem. Pharm. Bull.30: 1257Google Scholar
  40. [40]
    Ronald R. C., Winkler M. R. (1983) Tetrahedron39: 2031Google Scholar
  41. [41]
    Abramovitch R. A., Saha J. G. (1966) Adv. Heterocycl. Chem.6: 229Google Scholar
  42. [42]
    Spryskov A. A., Golubin L. N. (1961) J. Gen. Chem. USSR31: 901Google Scholar
  43. [43]
    Bryce-Smith D., Gold V., Stachell D. P. N. (1954) J. Chem Soc.: 2743; Pocker V., Exner J. H. (1968) J. Am. Chem. Soc.90: 6764Google Scholar
  44. [44]
    March J. (1985) Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley, New York, p. 447Google Scholar
  45. [45]
    Liotta D., Saindane M., Waykole L., Stephens J., Grossman J. (1988) J. Am. Chem. Soc.110: 2667Google Scholar
  46. [46]
    Liotta D., Saindane M., Waykole L. (1983) J. Am. Chem. Soc.105: 2922; Arnett E. M., Molter K. E., Marchat E. C., Donovan H. W., Smith P. (1987) J. Am. Chem. Soc.109: 3788; Yamataka H., Fujimura N., Kawafuji Y., Hanafuse T. (1987) J. Am. Chem. Soc.109: 4305Google Scholar
  47. [47]
    Benken R., Andres W., Günther H. (1988) Angew. Chem.100: 1212Google Scholar
  48. [48]
    Mancerou L., Andrews L. (1988) J. Am. Chem. Soc.110: 4305Google Scholar
  49. [49]
    Cram D. J., Alison D. R. (1963) J. Am. Chem. Soc.85: 1245Google Scholar
  50. [50]
    Kirpal A., Kunze H. (1927) Ber.60: 138Google Scholar
  51. [51]
    Artamonov A. A., Shneider T., Boronova N. V. (1980) Khim. Geterotsikl. Soedin.: 516Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jan Epsztajn
    • 1
  • Andrzej Jóźwiak
    • 1
  • Krzysztof Czech
    • 1
  • Aleksandra K. Szcześniak
    • 1
  1. 1.Department of Organic Chemistry, Institute of ChemistryUniversity of ŁódźŁódźPoland

Personalised recommendations