Bulletin of Experimental Biology and Medicine

, Volume 79, Issue 2, pp 154–157 | Cite as

Effect of substances modifyingγ-aminobutyric acid metabolism on recovery cycles of the interzonal response of the cat motor cortex

  • G. M. Molodavkin
  • R. U. Ostrovskaya
  • V. V. Markovich


The effect of thiosemicarbazide (TSC), depakin and bicuculline on recovery cycles of the interzonal response of the motor cortex was investigated in unanesthetized, curarized cats. Substances modifying the metabolism of γ-aminobutyric acid (GABA) selectively influence the facilitation of this response (with intervals of 20–100 msec between stimuli). After injection of TSC, which lowers the GABA content in the brain, and of bicuculline, which specifically blocks GABA-ergic synapses, facilitation is increased, but after injection of depakin, which increases the GABA concentration, and after intraventricular injection of GABA facilitation is reduced. Caffeine and bemegride increase the amplitude of both conditioning and test responses but have no selective action on facilitation of the test response. Benactyzine and arecoline, substances exciting cholingergic structures, likewise had no selective effect on the recovery cycles. It is suggested that the facilitation described above is the result of interaction between systems of recurrent excitation and inhibition. GABA plays an important role in the regulation of this interaction.

Key Words

γ-aminobutyric acid (GABA) interzonal cortical response GABA-ergic brain structures cholinergic brain structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. L. Glants, A. G. Rabin, and V. K. Reshetnyak, Byull. Éksperim. Biol. i Med., No. 11, 50 (1969).Google Scholar
  2. 2.
    V. I. Gusel'nikov and A. Ya. Supin Rhythmic Activity of the Brain [in Russian], Moscow (1968).Google Scholar
  3. 3.
    R. U. Ostrovskaya and V. V. Parin, Byull. Éksperim. Biol. i Med.,75, No. 5, 47 (1973).Google Scholar
  4. 4.
    V. N. Storozhuk, Fiziol. Zh. SSSR, No. 10, 1169 (1966).Google Scholar
  5. 5.
    V. N. Storozhuk, Neirofiziologiya, No. 2, 128 (1971).Google Scholar
  6. 6.
    A. Ya. Supin, Fiziol. Zh. SSSR, No. 11, 1297 (1966).Google Scholar
  7. 7.
    B. Blum, L. M. Halpern, and A. A. Ward, Exp. Neurol.,20, 156 (1968).Google Scholar
  8. 8.
    D. R. Curtis and D. Felix, Brain Res.,34, 301 (1971).Google Scholar
  9. 9.
    J. J. Dreifuss, J. S. Kelly, and K. Krnjevic, Exp Brain Res.,9, 137 (1969).Google Scholar
  10. 10.
    E. D. Jones and T. P. S. Powell, Brain Res.,9, 71 (1968).Google Scholar
  11. 11.
    K. Krnjevic and S. Schwartz, Exp. Brain Res.,3, 320 (1967).Google Scholar
  12. 12.
    J. schmidt, Acta Biol. Med. Germ.,31, 87 (1973).Google Scholar
  13. 13.
    J. Schmidt, Acta Biol. Med. Germ.,31, 95 (1973).Google Scholar
  14. 14.
    S. Simler, L. Ciesielski, M. Maitre, et al., Biochem. Pharmacol.,22, 1701 (1973).Google Scholar
  15. 15.
    C. Stefanis and H. Jasper, J. Neurophysiol.,27, 855 (1964).Google Scholar
  16. 16.
    W. D. Thompson, S. D. Stoney, and H. Asanuma, Brain Res.,22, 15 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • G. M. Molodavkin
  • R. U. Ostrovskaya
  • V. V. Markovich

There are no affiliations available

Personalised recommendations