Catalysis Letters

, Volume 31, Issue 2–3, pp 273–285 | Cite as

N2 and CO molecules as probes of zeolite acidity: an infrared spectroscopy and density functional investigation

  • Konstantin M. Neyman
  • Paul Strodel
  • Sergey Ph. Ruzankin
  • Norbert Schlensog
  • Helmut Knözinger
  • Notker Rösch
Article

Abstract

The interaction of N2 with Brønsted acid centers of H-ZSM-5 zeolite has been investigated employing Fourier transform infrared spectroscopy and cluster model calculations based on a gradient corrected density functional method. A comparison is made with CO, which is widely used as a probe for surface acidity. It is shown that the computational approach is capable of almost quantitatively reproducing a number of sensitive parameters of the H-bonded dinitrogen and carbonyl complexes, like adsorption energy, adsorption-induced changes of the vibrational frequencies and of their intensities. According to a constraint space orbital variation analysis, the carbonyl and dinitrogen complexes mainly differ by the somewhat stronger σ donation ability of CO as compared to N2. It is concluded that dinitrogen may serve as a convenient probe for the acidity of zeolites.

Keywords

Brønsted acidity of zeolites N2 and CO probes H-bonding FTIR spectroscopy adsorption-induced change of vibrational frequencies and intensities density functional cluster models gradient corrected exchange-correlation functionals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Knözinger, in:Elementary Reaction Steps in Heterogeneous Catalysis, eds. R.W. Joyner and R.A. van Santen (Plenum Press, New York, 1993) p. 267.Google Scholar
  2. [2]
    S.A. Zubkov, V.Y. Borovkov, S.G. Gagarin and V.B. Kazansky, Chem. Phys. Lett. 107 (1984) 337.Google Scholar
  3. [3]
    S.M. Zverev, K.S. Smirnov and A.A. Tsyganenko, Kinet. Katal. 29 (1988) 1439.Google Scholar
  4. [4]
    F. Wakabayashi, J. Kondo, A. Wada, K. Domen and C. Hirose, J. Phys. Chem. 97 (1993) 10761.Google Scholar
  5. [5]
    F. Wakabayashi, J. Kondo, K. Domen and C. Hirose, Catal. Lett. 21 (1993) 257.Google Scholar
  6. [6]
    S. Bates and J. Dwyer, J. Phys. Chem. 97 (1993) 5897.Google Scholar
  7. [7]
    I.N. Senchenya, private communication.Google Scholar
  8. [8]
    H. Knözinger, in:Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, Springer Series in Surface Sciences, Vol. 33, eds. H.-J. Freund and E. Umbach (Springer, Berlin, 1993) p. 257.Google Scholar
  9. [9]
    F. Sim, A. St-Amant, I. Papai and D.R. Salahub, J. Am. Chem. Soc. 114 (1992) 4391.Google Scholar
  10. [10]
    T. Oie, I.A. Topol and S.K. Burt, J. Phys. Chem. 98 (1994) 1121.Google Scholar
  11. [11]
    I. Mirsojew, S. Ernst, J. Weitkamp and H. Knözinger, Catal. Lett. 24 (1994) 235.Google Scholar
  12. [12]
    P.S. Bagus, K. Hermann and C.W. Bauschlicher Jr., J. Chem. Phys. 80 (1984) 4378.Google Scholar
  13. [13]
    G. Künzmann, Doctoral Thesis, University of Munich, Germany (1987).Google Scholar
  14. [14]
    N. Rösch, P. Knappe, P. Sandl, A. Görling and B.I. Dunlap, in:The Challenge of d and f Electrons. Theory and Computation, ACS Symposium Series No. 394, eds. D.R. Salahub and M.C. Zerner (Am. Chem. Soc., Washington, 1989) p. 180.Google Scholar
  15. [15]
    B.I. Dunlap and N. Rösch, Advan. Quantum Chem. 21 (1990)317.Google Scholar
  16. [16]
    N. Rösch, in:Cluster Models for Surface and Bulk Phenomena, NATO ASI Series B, eds. G. Pacchioni, P.S. Bagus and F. Parmigiani (Plenum Press, New York, 1992) p. 251.Google Scholar
  17. [17]
    S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (1980) 1200.Google Scholar
  18. [18]
    A.D. Becke, Phys. Rev. A 38 (1988) 3098.Google Scholar
  19. [19]
    C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37 (1988) 785.Google Scholar
  20. [20]
    B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157 (1989) 200.Google Scholar
  21. [21]
    L. Fan and T. Ziegler, J. Chem. Phys. 94 (1991) 6057.Google Scholar
  22. [22]
    A. Veillard, Theoret. Chim. Acta. 12 (1968) 168.Google Scholar
  23. [23]
    F.B. van Duijneveldt, IBM Res. Report No. RJ945 (1971).Google Scholar
  24. [24]
    R.C. Raffenetti, J. Chem. Phys. 58 (1973) 4452.Google Scholar
  25. [25]
    H. Jörg, N. Rösch, J.R. Sabin and B.I. Dunlap, Chem. Phys. Lett. 114 (1985) 529.Google Scholar
  26. [26]
    S.F. Boys and F. Bernardi, Mol. Phys. 19 (1970) 553.Google Scholar
  27. [27]
    R.D. Amos, Advan. Chem. Phys. 67 (1987) 99.Google Scholar
  28. [28]
    K.M. Neyman, S.P. Ruzankin and N. Rösch, to be published.Google Scholar
  29. [29]
    L.M. Kustov, V.B. Kazansky, S. Beran, L. Kubelková and P. Jiru, J. Phys. Chem. 91 (1987) 5247.Google Scholar
  30. [30]
    L. Kubelková, S. Beran and J. A. Lercher, Zeolites 9 (1989) 539.Google Scholar
  31. [31]
    A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan and C. Otero Areán, J. Chem. Soc. Faraday Trans. 88 (1992) 2959.Google Scholar
  32. [32]
    A. Zecchina, S. Bordiga, G. Spoto, L. Marchese, G. Petrini, G. Leofanti and M. Padovan, J. Phys. Chem. 96 (1992) 4991.Google Scholar
  33. [33]
    K.P. Huber and G. Herzberg,Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure, Vol. 4 (Van Nostrand Reinhold, New York, 1979).Google Scholar
  34. [34]
    A.G. Pelmenshchikov, E.A. Paukshtis, V.G. Stepanov, V.I. Pavlov, E.N. Yurchenko, K.G. Ione and G.M. Zhidomirov, J. Phys. Chem. 93 (1989) 6725.Google Scholar
  35. [35]
    M.A. Makarova, A.F. Ojo, K. Karim, M. Hunger and J. Dwyer, J. Phys. Chem. 98 (1994) 3619.Google Scholar
  36. [36]
    S.G. Lias, J.F. Liebman and R.D. Levin, J. Phys. Chem. Ref. Data 13 (1984) 695.Google Scholar
  37. [37]
    P. Ugliengo, V.R. Saunders and E. Garrone, J. Phys. Chem. 93 (1989) 5210.Google Scholar
  38. [38]
    N. Echoufi and P. Gélin, J. Chem. Soc. Faraday Trans. 88 (1992) 1067.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Konstantin M. Neyman
    • 1
  • Paul Strodel
    • 1
  • Sergey Ph. Ruzankin
    • 2
  • Norbert Schlensog
    • 3
  • Helmut Knözinger
    • 3
  • Notker Rösch
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieTechnische Universität MünchenGarchingGermany
  2. 2.Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussia
  3. 3.Institut für Physikalische ChemieUniversität MünchenMunichGermany

Personalised recommendations