Catalysis Letters

, Volume 31, Issue 4, pp 359–366 | Cite as

Study of the sorption and acidic properties of MTW-type zeolite

  • B. H. Chiche
  • R. Dutartre
  • F. Di Renzo
  • F. Fajula
  • A. Katovic
  • A. Regina
  • G. Giordano


The acidity of H-MTW-type zeolite has been investigated using infrared spectroscopy of adsorbed pyridine. Pore volume has been measured by nitrogen andn-hexane adsorption. The zeolite exhibits infrared signals at 3612 and 3580 cm−1 tentatively attributed to bridging hydroxyl groups vibrating in the main channel and in the six-membered rings of the structure, respectively. Both hydroxyl groups possess high acid strength and are readily accessible to pyridine. H-MTW shows an-hexane cracking activity at 350°C comparable to that obtained with MFI and BEA-type materials with a product selectivity between medium and large pore structural types.


zeolite MTW ZSM-12 acidity pyridine adsorption FTIR n-hexane cracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.M. Meier and D.H. Olson,Atlas of Zeolite Structure Types, 3rd rev. Ed. (Butterworth-Heinemann, London, 1992).Google Scholar
  2. [2]
    R.B. Lapierre, A.C. Rohrman Jr., J.L. Schlenker, J.D. Wood, M.K. Rubin and W.J. Rohrbaugh, Zeolites 5 (1985) 346.Google Scholar
  3. [3]
    E.J. Rosinski and M.K. Rubin, US Patent 3,832,449 (1974).Google Scholar
  4. [4]
    S. Ernst, P.A. Jacobs, J.A. Martens and J. Weitkamp, Zeolites 7 (1987) 458.Google Scholar
  5. [5]
    X. Shou-He and L. Hexuan,Preprints of Posters 7th Int. Zeolite Association (Japan Association of Zeolites, Tokyo, 1986) p. 25.Google Scholar
  6. [6]
    F. Di Renzo, A. Albizane, M.A. Nicolle, F. Fajula, F. Figueras and T. Des Courières, Stud. Surf. Sci. Catal. 65 (1991) 603.Google Scholar
  7. [7]
    A. Katovic and G. Giordano, Chem. Express 6 (1991) 969.Google Scholar
  8. [8]
    P.A. Jacobs and J.A. Martens, Stud. Surf. Sci. Catal. 33 (1987) 297.Google Scholar
  9. [9]
    A. Katovic and G. Giordano, ACS Spring Meeting, Anaheim 1995, submitted.Google Scholar
  10. [10]
    C.A. Fyfe, H. Strobl, G.T. Kokotailo, C.T. Pasztor, G.E. Barlow and S. Bradley, Zeolites 8 (1988) 132.Google Scholar
  11. [11]
    B.H. Chiche, F. Fajula and E. Garrone, J. Catal. 146 (1994) 460.Google Scholar
  12. [12]
    J.W. Ward, J. Phys. Chem. 73 (1969) 2086.Google Scholar
  13. [13]
    E. Bourgeat-Lami, P. Massiani, F. Di Renzo, P. Espiau, F. Fajula and T. Des Courières, Appl. Catal. 72 (1991) 139.Google Scholar
  14. [14]
    E. Loeffler, U. Lhose, Ch. Peuker, O. Oehlmann, L.M. Kustov, V.L. Zholobenko and V.B. Kazansky, Zeolites 10 (1990) 266.Google Scholar
  15. [15]
    P.A. Jacobs and W.J. Mortier, Zeolites 2 (1982) 226.Google Scholar
  16. [16]
    A. Janin, M. Maache, J.C. Lavalley, J.F. Joly, F. Raatz and N. Szydlowski, Zeolites 11 (1991) 391.Google Scholar
  17. [17]
    Z. Macedo, PhD Thesis, University Paris VI, Paris, France (1988).Google Scholar
  18. [18]
    J. Weitkamp, S. Ernst and R. Kumar, Appl. Catal. 27 (1986) 207.Google Scholar
  19. [19]
    J.A. Martens, M. Tielen, P.A. Jacobs and J. Weitkamp, Zeolites 4 (1984) 98.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • B. H. Chiche
    • 1
  • R. Dutartre
    • 1
  • F. Di Renzo
    • 1
  • F. Fajula
    • 1
  • A. Katovic
    • 2
  • A. Regina
    • 2
  • G. Giordano
    • 2
  1. 1.Laboratoire de Matériaux Catalytiques et Catalyse en Chimie OrganiqueURA 418 CNRS, ENSCMMontpellier CedexFrance
  2. 2.Dipartimento di Ingegneria Chimica e dei MaterialiUniversità della CalabriaRendeItaly

Personalised recommendations