Advertisement

Catalysis Letters

, Volume 31, Issue 4, pp 325–331 | Cite as

Methanol synthesis over a Zn-deposited copper model catalyst

  • J. Nakamura
  • I. Nakamura
  • T. Uchijima
  • Y. Kanai
  • T. Watanabe
  • M. Saito
  • T. Fujitani
Article

Abstract

Methanol synthesis by the hydrogenation of CO2 over Zn-deposited polycrystalline Cu was studied using surface science techniques. The Zn sub-monolayer was oxidized by the reaction mixture during the reaction at 523 K, leading to the formation of ZnO species. The kinetic results definitely showed that the ZnO species on the Cu surface promoted the catalytic activity of methanol formation, where the activity of Cu increased by a factor of 6 at the Zn coverage of 0.17. A volcano-shaped curve was obtained for the correlation between the Zn coverage and the catalytic activity, which was very similar to the correlation curve between the oxygen coverage and the specific activity for methanol formation previously obtained for the Cu powder catalysts. The role of ZnO in Cu/ZnO based catalysts was ascribed to the stabilization of Cu+ species by the ZnO moieties on the Cu surface.

Keywords

methanol synthesis copper catalyst role of ZnO XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C.J. Bart and R.P.A. Sneeden, Catal. Today 2 (1987) 1.Google Scholar
  2. [2]
    J. Szanyi and D.W. Goodman, Catal. Lett. 10 (1991) 383.Google Scholar
  3. [3]
    G.R. Sheffer and T.S. King, J. Catal. 115 (1989) 376; 116 (1989) 488.Google Scholar
  4. [4]
    G.C. Chinchen, M.S. Spencer, K.C. Waugh and D.A. Whan, J. Chem. Soc. Faraday Trans. 83 (1987) 2193.Google Scholar
  5. [5]
    G.C. Chinchen, K.C. Waugh and D.A. Whan, Appl. Catal. 25 (1986) 101.Google Scholar
  6. [6]
    K. Klier, Adv. Catal. 31 (1982) 243.Google Scholar
  7. [7]
    R. Burch, S.E. Golunski and M. Spencer, J. Chem. Soc. Faraday Trans. 86 (1990) 2683.Google Scholar
  8. [8]
    S.V. Didziulis, K.D. Butcher, S.L. Cohen and E.I. Solomon, J. Am. Chem. Soc. 111 (1989) 7110.Google Scholar
  9. [9]
    A. Ludviksson, K.H. Ernst, R. Zhang and C.T. Campbell, J. Catal. 141 (1993) 380.Google Scholar
  10. [10]
    T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura and T. Uchijima, Catal. Lett. 25 (1994) 271.Google Scholar
  11. [11]
    Y. Kanai, T. Watanabe, T. Fujitani, M. Saito, J. Nakamura and T. Uchijima, Catal. Lett. 27 (1994) 67.Google Scholar
  12. [12]
    Y. Kanai, T. Watanabe, T. Fujitani, M. Saito, J. Nakamura and T. Uchijima, in preparation.Google Scholar
  13. [13]
    J.N. Russell Jr., S.M. Gates and J.T. Yates Jr., Surf. Sci. 163 (1985) 516.Google Scholar
  14. [14]
    C.T. Campbell, K.A. Daube and J.M. White, Surf. Sci. 182 (1987) 458.Google Scholar
  15. [15]
    C.T. Au, W. Hirsch and W. Hirschwald, Surf. Sci. 197 (1988) 391.Google Scholar
  16. [16]
    G.A. Jernigan and G.A. Somorjai, J. Catal. 147 (1994) 567.Google Scholar
  17. [17]
    P.B. Rasmussen, P.M. Holmblad, C.V. Askgaard, C.V. Ovesen, P. Stoltze, J.K. Norskov and I. Chorkendorff, Catal. Lett. 26 (1994) 373.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • J. Nakamura
    • 1
  • I. Nakamura
    • 1
  • T. Uchijima
    • 1
  • Y. Kanai
    • 2
  • T. Watanabe
    • 2
  • M. Saito
    • 3
  • T. Fujitani
    • 3
  1. 1.Institute of Materials ScienceUniversity of TsukubaIbarakiJapan
  2. 2.Research Institute of Innovative Technology for EarthIbarakiJapan
  3. 3.National Institute for Resources and EnvironmentIbarakiJapan

Personalised recommendations