Skip to main content
Log in

Convergent synthesis of 2′,3′-dideoxy-3′-methylthio and 2′,3′-dideoxy-3′-mercapto nucleosides and their disulfide analogues — Potential anti-HIV agents

Konvergente Synthese von 2′,3′-Didesoxy-3′-methylthio und 2′,3′-Didesoxy-3′-mercapto-Nucleosiden und ihren Disulfid-Analogen — Potentielle Anti-HIV — Agentien

  • Organische Chemie Und Bicchemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

The iodide4(α) or7 synthesized in three steps from 2-deoxy-D-ribose1, has been subjected to a number of nucleophilic substitution reactions producing the 3-benzoylthio-, 3-methylthio- and the 3-thiocyanato-2,3-dideoxy-D-erythro-pentofuranosides8,13 and15, respectively, in addition to the disulfide17 of their 3-mercapto analogue. Subjecting the thiobenzoate8 to the Friedel-Crafts catalyzed silyl Hilbert Johnson reaction in conjunction with the silylated nucleobases of uracil, thymine and N4-isobutyrylcytosine9a–c resulted in the isolation of the 2′,3′-dideoxy-3′-mercapto nucleosides11 and their disulfides12 subsequent to deprotection. The 2,3-dideoxy-3-methylthio-pentofuranoside13 afforded both anomers of the 2′,3′-dideoxy-3′-methylthio nucleosides19 and20 under similar conditions. The first known example of a coupling directly on a 2,3-didehydro-2,3-dideoxyfuranose is presented. 2′,3′-Dideoxy-3′-mercaptocytidine showed protection against HIV-1 in MT-4 cells with ED50=20 µM.

Zusammenfassung

Die in drei Stufen aus 2-Desoxy-D-ribose hergestellten Jodide4(α) bzw. 7 wurden einer Reihe von nucleophilen Substitutionsreaktionen unterzogen, wobei die 3-Benzoylthio-, 3-Methylthio-und 3-Thiocyanato-2,3-didesoxy-D-erythro-pentofuranoside8,13 und15 zusätzlich zum Disulfid17 ihrer 3-Mercapto-Analogen entstanden. Bei der Friedel-Crafts-katalysierten Silyl-Hilbert-Johnson Reaktion des Thiobenzoats8 in Verbindung mit den silylierten Nucleobasen Uracil, Thymin und N4-Isobutyrylcytosin9a–c entstanden nach der Schutzgruppenentfernung die 2′,3′-Didesoxy-3′-mercapto-Nucleoside11 und ihre Disulfide12. Unter ähnlichen Bedingungen ergaben die 2′,3′-Didesoxy-3′-methylthiopentofuranoside13 beide Anomere der 2′,3′-Didesoxy-3′-methylthionucleoside19 und20. Es wird das erste Beispiel einer direkten Kopplung 2,3-Didehydro-2,3-didesoxyfuranose vorgestellt. 2′,3′-Didesoxy-3′-mercaptocytidin zeigte Schutzwirkung gegenüber HIV-1 in MT-4 Zellen mit ED50=20 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C., Rozenbaum W., Montagnier L. (1983) Science220: 868

    Google Scholar 

  2. Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Safai B., White G., Foster P., Markham P. D. (1984) Science224: 500

    Google Scholar 

  3. Mitsuya H., Weinhold K. J., Furman P. A., St. Clair M. H., Lehrman S. N., Gallo R. C., Bolognesi D., Barry D. W., Broder S. (1985) Proc. Natl. Acad. Sci. USA82: 7096

    Google Scholar 

  4. Mitsuya H., Broder S. (1987) Nature325: 773

    Google Scholar 

  5. Ono K., Ogasawara M., Iwata Y., Nakane H., Fujii T., Sawai K., Saneyoshi M. (1986) Biochem. Biophys. Res. Commun.140: 498

    Google Scholar 

  6. De Clercq E. (1990) TiPS11: 198 and references cited therein

  7. Hansch C., Leo A. (1979) Ch. VI Cluster Analysis and the Design of Congener Sets, Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley USA, p. 49

  8. Fischer E. (1893) Ber. Dtsch. Chem. Ges.26: 2400

    Google Scholar 

  9. Fischer E. (1895) Ber. Dtsch. Chem. Ges.28: 1145

    Google Scholar 

  10. Hoffer M. (1960) Chem. Ber.93: 2777

    Google Scholar 

  11. Fox J. J., Yung N. C., Wempen I., Hoffer M. (1961) J. Am. Chem. Soc.83: 4066

    Google Scholar 

  12. Deriaz R. E., Overend W. G., Stacey M., Wiggins L. F. (1949) J. Chem. Soc.: 2836

  13. Motawia M. S., Pedersen E. B. (1990) Liebigs Ann. Chem.: 599

  14. Fleet G. W. J., Son J. C., Derome A. E. (1988) Tetrahedron44: 625

    Google Scholar 

  15. Hansen P., Pedersen E. B. (1990) Acta Chem. Scand.44: 522

    Google Scholar 

  16. Kunz H., Schmidt P. (1979) Tetrahedron Lett.23: 2123

    Google Scholar 

  17. Kunz H., Schmidt P. (1979) Chem. Ber.112: 3886

    Google Scholar 

  18. Cosstick R., Vyle J. S. (1990) Nucleic Acids Res.18: 829

    Google Scholar 

  19. Wittenburg E. (1964) Z. Chem.4: 303

    Google Scholar 

  20. Vorbrüggen H., Krolikiewicz K., Bennua B. (1981) Chem. Ber.114: 1234

    Google Scholar 

  21. Sigiura Y., Furuya S., Furukawa Y. (1988) Chem. Pharm. Bull.36: 3253

    Google Scholar 

  22. Niedballa U., Vorbrüggen H. (1974) J. Org. Chem.39: 3654

    Google Scholar 

  23. Herdewijn P., Balzarini J., Baba M., Pauwels R., Van Aerschot A., Janssen G., De Clercq E. (1988) J. Med. Chem.31: 2040

    Google Scholar 

  24. Lin T.-S., Guo J.-Y., Schinazi R. F., Chu C. K., Xiang J.-N., Prusoff W. H. (1988) J. Med. Chem.31: 336

    Google Scholar 

  25. Chorbadjiev S., Roumian C., Markov P. (1977) J. Prakt. Chem.319: 1036

    Google Scholar 

  26. Mitsunobu O. (1981) Synthesis: 1

  27. Nagamachi T., Fourrey J.-L., Torrence P. F., Waters J. A., Witkop B. (1974) J. Med. Chem.17: 403

    Google Scholar 

  28. Cleland W. W. (1964) Biochemistry3: 480

    Google Scholar 

  29. Dueholm K. L., Motawia M. S., Pedersen E. B., Nielsen C. M., Lundt I. (1992) Arch. Pharm. (Weinheim)325: 597

    Google Scholar 

  30. Okabe M., Sun R.-C., Tam S. Y.-K., Todaro L. J., Coffen D. L. (1988) J. Org. Chem.53: 4780

    Google Scholar 

  31. Mansuri M. M., Wos J. A., Martin J. C. (1989) Nucleosides Nucleotides8: 1463

    Google Scholar 

  32. Miller N., Fox J. J. (1964) J. Org. Chem.29: 1772

    Google Scholar 

  33. Hildesheim J., Cléophax J., Géro S. D. (1967) Tetrahedron Lett.18: 1685

    Google Scholar 

  34. Köll P., Deyhim S. (1978) Chem. Ber.111: 2913

    Google Scholar 

  35. Chu C. K., Babu J. R., Beach J. W., Ahn S. K., Huang H., Jeong L. S., Lee S. J. (1990) J. Org. Chem.55: 1418

    Google Scholar 

  36. Abdel-Megied A. E.-S., Pedersen E. B., Nielsen C. M. (1991) Synthesis: 313

  37. Vorbrüggen H., Höfle G. (1981) Chem. Ber.114: 1256

    Google Scholar 

  38. Horwitz J. P., Chua J., Noel M., Donatti J. T. (1967) J. Org. Chem.32: 817

    Google Scholar 

  39. Greengrass C. W., Hoople D. W. T., Street S. D. A., Hamilton F., Marriott M. S., Bordner J., Dalgleish A. G., Mitsuya H., Broder S. (1989) J. Med. Chem.32: 618 and references cited therein

    Google Scholar 

  40. Nielsen C. M., Bygbjerg I. C., Vestergaard B. F. (1987) Lancet I: 566

    Google Scholar 

  41. Yuzhakov A. A., Chidzhavadze Z. G., Bibilashvilli R. Sh., Kraevskii A. A., Galegov G. A., Korneeva M. N., Nosik D. N., Kilesso T. Yu. (1991) Biorg. Khim.17: 504; (1991) Chem. Abstr.115: 84923g

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Tanta University, Tanta, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dueholm, K.L., Aly, Y.L., Jørgensen, P.T. et al. Convergent synthesis of 2′,3′-dideoxy-3′-methylthio and 2′,3′-dideoxy-3′-mercapto nucleosides and their disulfide analogues — Potential anti-HIV agents. Monatsh Chem 124, 37–53 (1993). https://doi.org/10.1007/BF00808508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808508

Keywords

Navigation