Advertisement

Amino Acids

, Volume 7, Issue 1, pp 45–56 | Cite as

The effect of a taurine-containing drink on performance in 10 endurance-athletes

  • K. -R. Geiß
  • I. Jester
  • W. Falke
  • M. Hamm
  • K. -L. Waag
Article

Summary

To determine the effect of a taurine-enriched drink “Red Bull” on performance, 10 endurance-athletes performed three trials. After 60 min. cycling at approximately 70% VO2 max, the subjects pedalled to exhaustion on a cycle ergometer. During each exercise, the subjects received 500 ml of a test-drink after 30 min. submaximal cycling: “Red Bull” without taurine, without glucuronolacton (U1), “Red Bull” without taurine, without glucuronolacton, without caffeine (U2) and “Red Bull” original drink containing taurine, glucuronolacton and caffeine (U3).

The heart rate level was significantly lower in U3 (p = 0,0031) 15 min. after application. The plasma catecholamines increased slightly from begin of exercise to 15 min. after application of the drinks in all trials but remained on a significantly lower level in U3 (epinephrine (p = 0,0011) and norepinephrine (p = 0,0003). Endurance time was significantly longer with “Red Bull” original in U3 (p = 0,015). The results of this study show a positive effect of a taurine-containing drink on hormonal responses which leads to a higher performance.

Keywords

Amino acids Taurine Heart rate Catecholamines Performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuma J, Takahisa K, Awata N, Ohta H, Hamaguchi H, Harada H, Takihara K, Hasegawa H, Yamagami R, Ishiyama T, Iwata H, Kishimoto S (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8: 276–282Google Scholar
  2. Baba A, Lee E, Tatsuno T, Iwata H (1982) Cysteine sulfinic acid in the central nervous system: antagonistic effect of taurine on cysteine sulfinic acid-stimulated formation of cyclic AMP in guinea pig hippocampal slices. J Neurochem 38: 1280–1285Google Scholar
  3. Bousquet P, Feldman J, Bloch R, Schwartz J (1981) Tag antagonises the central cardiovascular effects of taurine. J Pharmacol Exp Ther 219: 213–218Google Scholar
  4. Chazov EI, Malchikova LS, Lipiva NV, Asafov GB, Smirnov VN (1974) Taurine and electrical activity of the heart. Circ Res 35: 11–21Google Scholar
  5. Costill DL, Palsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10: 155Google Scholar
  6. Franconi F, Stendardi MI, Failli P, Antonini G, Bennardini F, Matucci R, Manzini S, Giotti A (1983) Taurine antagonizes the alpha-adrenergic positive inotropic effect of phenylephrine. In: Kuriyama K, Huxtable RJ, Iwata H (eds) Sulfur amino acids: Biochemical and clinical aspects: 51–60Google Scholar
  7. Geiß K-R, Jester I, Askali F, Förster H, Hamm M, Böhmer D (1993) Auswirkungen fruktose- und glukosehaltiger Getränke auf die körperliche Leistungsfähigkeit bei 9 Triathleten. Dtsch Sportärztekongreß Paderborn (publication in preparation)Google Scholar
  8. Geiß K-R, Nöcker J, Waag K-L, Queeney D (1991) Individual calorie calculation and sportspecific nutrient distribution in 100 high-performance athletes to increase performance. Int J Sports Med 12: 122Google Scholar
  9. Huxtable RJ, Bressler R (1973) Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta 323: 573–583Google Scholar
  10. Huxtable RJ (1992) Physiological actions of taurine. Physiological Rev 72 1: 128Google Scholar
  11. IBL (1993) Radioimmunoassays zur quantitativen Bestimmung der Katecholamine Noradrenalin und Adrenalin in Plasma und Urin. dbm bulletin: 1–20Google Scholar
  12. Inoue A, Takahashi H, Lee L, Iyoda I, Sasaki S, Ijichi H (1985) Centrally induced vasodepressor and sympathetic nerve responses to taurine. Jpn Circ J 49: 1180–1184Google Scholar
  13. Jacobs DS (ed) (1988) Laboratory test handbook. Laxi-Comp/Mosby, Cleveland, p 139Google Scholar
  14. Livesey JH, Hodgkinson SC, Roud HR, Donald RA (1980) hGH-analysing methods. Clin Biochem 13: 151Google Scholar
  15. Mal'Chikova LS, Elizarova EP (1981) Taurine and cAMP content in the heart. Kardiologiya 21: 85–89Google Scholar
  16. Mal'Chikova LS, Speranskaia NV, Elizarova EP (1979) Effect of taurine on the cAMP and cGMP content in the rat heart in stress. Byull Eksp Biol Med 87: 134–137Google Scholar
  17. Muramatsu M, Kakita K, Kuriyama K (1978) Amodulating tole of taurine on release of acetyl choline and norapinephrine from neuronal tissue. Jpn J Pharmacol 28: 259–268Google Scholar
  18. Ono M, Watanabe M, Minato K (1987) Effects of taurine on the metabolism under physical exercise. Sulfur Amino Acids 10: 183–186Google Scholar
  19. Pasantes-Morales H (1982) Taurine-calcium interactions in frog rod outer segments; taurine effects on an ATP-dependent calcium translocation process. Vision Res 22: 1487–1493Google Scholar
  20. Pasantes-Morales H, Martin DL, Ordonez A (1982) Taurine activation of a bicarbonatcdependent, ATP-supported calcium uptake in frog rod outer segments. Neurochem Res 7: 317–328Google Scholar
  21. Sherman WM, Brodowicz GR, Wright DA, Allen WK, Simonsen J, Dernbach A (1989) Effects of 4th preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exer 21: 598–604Google Scholar
  22. Trout DL, Estes EH, Friedberg SJ (1969) Microdetermination of long chain fatty acids in plasma and tissues. J Lipid Res 1: 199Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • K. -R. Geiß
    • 1
  • I. Jester
    • 1
  • W. Falke
    • 2
  • M. Hamm
    • 3
  • K. -L. Waag
    • 4
  1. 1.ISME GmbH, Privat-Institut für Sport, Medizin und ErnährungMörfeldenFederal Republic of Germany
  2. 2.Labor Drs. E. Brod, W. Falke, Ch. Brod-Falke, Hofheim/Ts.Federal Republic of Germany
  3. 3.Fachhochschule Hamburg, Fachbereich Ernährung und HauswirtschaftFederal Republic of Germany
  4. 4.Zentrum der Chirurgie, Abteilung für KinderchirurgieUniversität MannheimFederal Republic of Germany

Personalised recommendations