Skip to main content
Log in

A molecular piston mechanism of pumping protons by bacteriorhodopsin

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

In this review the proton-pumping mechanism proposed recently for bacteriorhodopsin [Chou, K. C. (1993) Journal of Protein Chemistry, 12: 337–350] is illustrated in terms of a phenomenological model. According to the model, theβ-ionone of the retinal chromophore in bacteriorhodopsin can be phenomenologically imagined as a molecular “piston”. The photon capture by bacteriorhodopsin would “pull” it up while the spontaneous decrease in potential energy would “push” it down so that it would be up and down alternately during the photocycle process. When it is pulled up, the gate of pore is open and the water channel for the proton translocation is through; when it is pushed down, the gate of pore is closed and the water channel is shut up. Such a model not only is quite consistent with experimental observations, but also provides useful insights and a different view to elucidate the protonpumping mechanism of bacteriorhodopsin. The essence of the model might be useful in investigating the mechanism of ion-channels of other membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bR:

bacteriorhodopsin

All-trans bR:

bacteriorhodopsin with all-trans retinal chromophore

13-cis bR:

bacteriorhodopsin with 13-cis retinal chromophore

All-trans bundle:

the 7-helix bundle in the all-trans bR

13-cis bundle:

the 7-helix bundle in the 13-cis bR

rms:

root-mean-square

References

  • Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ (1988) Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27: 8516–8520

    Google Scholar 

  • Butt HJ, Fendler K, Bamburg E, Tittor J, Oesterhelt D (1989) Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J 8: 1657–1663

    Google Scholar 

  • Carlacci L, Schulz MW, Chou KC (1991) Geometric and energetic parameters in lysineretinal chromophores. Protein Eng 4: 885–889

    Google Scholar 

  • Chou KC (1988) Review: Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30: 3–48

    Google Scholar 

  • Chou KC (1989) Graphic rules in steady and non-steady state enzyme kinetics. J Biol Chem 264: 12074–12079

    Google Scholar 

  • Chou KC (1990) Review: Applications of graph theory to enzyme kinetics and protein folding kinetics: steady and non-steady-state systems. Biophys Chem 30: 1–24

    Google Scholar 

  • Chou KC (1993) Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism. J Protein Chem 12: 337–350

    Google Scholar 

  • Chou KC, Maggiora GM (1988) Biological function of low-frequency vibrations (phonons). 7. The impetus for DNA to accommodate intercalators. Br Polym 20: 143–148

    Google Scholar 

  • Chou KC, Mao B (1988) Collective motion in DNA and its role in drug intercalation. Biopolymers 27: 1795–1815

    Google Scholar 

  • Chou KC, Némethy G, Scheraga HA (1983) Energetic approach to the packing ofα-helices. 1. Equivalent helices. J Phys Chem 87: 2869–2881

    Google Scholar 

  • Chou KC, Némethy G, Scheraga HA (1984) Energetic approach to the packing ofα-helices: 2. General treatment of nonequivalent and nonregular helices. J Am Chem Soc 106: 3161–3170

    Google Scholar 

  • Chou KC, Némethy G, Rumsey S, Tuttle RW, Scheraga HA (1985) Interactions between anα-helix and aβ-sheet: energetics ofα/β packing in proteins. J Mol Biol 186: 591–609

    Google Scholar 

  • Chou KC, Carlacci L, Maggiora GM, Parodi LA, Schulz MW (1992) An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin. Protein Sci 1: 810–827

    Google Scholar 

  • Dunker AK (1982) A proton motive force transducer and its role in proton pumps, proton engines, tobacco mosaic virus assembly and hemoglobin allosterism. J Theor Biol 97: 95–127

    Google Scholar 

  • Engelman DM, Zaccai G (1980) Bacteriorhodopsin is an inside-out protein. Proc Natl Acad Sci USA 77: 5894–5898

    Google Scholar 

  • Engelman DM, Henderson R, McLachlan AD, Wallace BA (1980) Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci USA 77: 2023–2027

    Google Scholar 

  • Fahmy K, Siebert F, Grossjean MF, Tavan P (1989) Photoisomerization in bacteriorhodopsin studied by linear dichroism, and photoselection experiments combined with quantum chemical theoretical analysis. J Mol Struct 214: 257–288

    Google Scholar 

  • Fodor SPA, Ames JB, Gebhard R, van der Berg EMM, Stoeckenius W, Lugtenburg J, Mathies RA (1988) Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism. Biochemistry 27: 7097–7101

    Google Scholar 

  • Gebhard FX, Schertler FX, Lozier R, Michel H, Oesterhelt D (1991) Chromophore motion during the bacteriorhodopsin photocycle: polarized absorption spectroscopy of bacteriorhodopsin and its M-state bacteriorhodopsin crystals. EMBO J 10: 2353–2361

    Google Scholar 

  • Gerwert K, Hess B, Soppa J, Oesterhelt D (1989) Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 86: 4943–4947

    Google Scholar 

  • Harbison GS, Smith SO, Pardoen JA, Courtin JM, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid-state13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24: 6955–6962

    Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-micros-copy. J Mol Biol 213: 899–929

    Google Scholar 

  • Heyn MP, Cherry RL, Muller U (1977) Transient and linear dichroism studies on bacteriorhodopsin: determination of the orientation of the 568 nm all-trans retinal chromophore. J Mol Biol 117: 607–620

    Google Scholar 

  • Hilderandt P, Stockburger M (1984) Role of water in bacteriorhodopsin's chromophore: resonance raman study. Biochemistry 23: 5539–5548

    Google Scholar 

  • Holz M, Drachev LA, Mogi T, Otto H, Kaulen AD, Heyn MP, Skulashev VP, Khorana HG (1989) Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci USA 86: 2167–2171

    Google Scholar 

  • Khorana HG (1988) Bacteriorhodopsin, a membrane protein that uses light to translocate protons. J Biol Chem 263: 7439–7442

    Google Scholar 

  • Khorana HG, Gerber GE, Herlihy WC, Gray CP, Anderegg RJ, Nihei K, Biemann K (1979) Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci USA 76: 5046–5050

    Google Scholar 

  • Kouyama T, Nasuda-Kouyama A, Ikegami A, Mathew MK, Stoeckenius W (1988) Bacteriorhodopsin photoreaction: identification of a long-lived intermediate N (P, R350) at a high pH and its M-like photoproduct. Biochemistry 27: 5855–5863

    Google Scholar 

  • Kozlov IA, Skulachev VP (1977) H+-adenosine triphosphatase and membrane energy coupling. Biochem Biophys Acta 463: 29–89

    Google Scholar 

  • Lin SW, Mathies RA (1989) Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism. Biophys J 56: 653–660

    Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light-driven proton pump in halobacterium halobium. Biophys J 15: 955–962

    Google Scholar 

  • Mathies RA, Lin SW, Ames JB, Pollard WT (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem 20: 491–518

    Google Scholar 

  • Martel P (1992) Biophysical aspects of neutron scattering from vibrational modes of proteins. Prog Biophys Mol Biol 57: 129–179

    Google Scholar 

  • Merz H, Zundel G (1983) Proton-transfer equilibria in phenol-carboxylate hydrogen bonds. Implications for the mechanism of light-induced proton activation in bacteriorhodopsin. Chem Phys Lett 95: 529–532

    Google Scholar 

  • Mogi T, Stern LJ, Hackell NR, Khorana HG (1987) Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc Natl Acad Sci USA 84: 5595–5599

    Google Scholar 

  • Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 85: 4148–4152

    Google Scholar 

  • Mogi T, Stern LJ, Chao BH, Khorana HG (1989) Structure-function studies on bacteriorhodopsin. 8. Substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids. J Biol Chem 264: 14192–14196

    Google Scholar 

  • Mogi T, Thomas M, Khorana HG (1989) Structure-function studies on bacteriorhodopsin. 9. Substitutions of tryptophan rcsidues affect protein-retinal interactions in bacteriorhodopsin. J Biol Chem 264: 14197–14201

    Google Scholar 

  • Muradin-Szweykowska M, Pardoen JA, Dobbelstein D, Van Amsterdam, LjP, Lugtenburg J (1984) Bacteriorhodopsins with chromophores modified at theβ-ionone site (formation and light-driven action of the proton pump). Eur J Biochem 140: 173–176

    Google Scholar 

  • Nagle JF, Morowitz HJ (1978) Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci USA 75: 298–302

    Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70: 2853–2857

    Google Scholar 

  • Otto H, Marti T, Holz M, Mogi T, Lindau M, Khorana HG, Heyn MP (1989) Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci USA 86: 9228–9232

    Google Scholar 

  • Ovchinnikov YA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148: 179–190

    Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Feigina MY, Kiselev AV, Lobanov NA (1979) The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett 100: 219–224

    Google Scholar 

  • Popot JL, Engelman DM, Gurel O, Zaccaï G (1989) Tertiary structure of bacteriorhodopsin. J Mol Biol 210: 829–847

    Google Scholar 

  • Richardson JS, Richardson DC, Tweedy NB, Gernet KM, Quinn TP, Hecht MH, Erickson BW, Yan Y, McClain RD, Donlan MC, Surles MC (1992) Looking at proteins: representations, folding, packing, and design-Biophysical Society National Lecture, 1992. Biophys J 63: 1186–1209

    Google Scholar 

  • Rothschild KL (1992) FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr 24: 147–167

    Google Scholar 

  • Schulton K, Tavan P (1978) A mechanism for the light-driven proton pump of Halobacterium halobium. Nature 272: 85–86

    Google Scholar 

  • Stoeckenius W, Lozier RH, Bogomolni RA (1979) Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta 505: 215–278

    Google Scholar 

  • Tittor J, Soell C, Oesterhelt D, Butt HJ, Bamburg E (1989) A defective proton pump, point-mutated bacteriorhodopsin Asp96 → Asn is fully reactivated by azide. EMBO J 8: 3477–3482

    Google Scholar 

  • White ST (1992) Jane S. Richardson: Biophysical society national lecturer 1992 — an appreciation. Biophys J 63: 1185–1185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, K.C. A molecular piston mechanism of pumping protons by bacteriorhodopsin. Amino Acids 7, 1–17 (1994). https://doi.org/10.1007/BF00808442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808442

Keywords

Navigation