Skip to main content
Log in

Vapour phase deposition and thermal decarbonylation of Re2(CO)10 on gamma-alumina: infrared studies

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dirheniumdecacarbonyl vacuum sublimed onto mesoporous γ-alumina forms Lewis type adducts where an axial CO group is coordinated to an A13+ ion at the metal oxide surface, as revealed by IR spectroscopy. Vacuum heating of the surface adduct at 773 K brings about decarbonylation, with intermediate formation of a surface-bound mononuclear tricarbonyl which was completely decarbonylated on prolonged heating at the same temperature. The resulting material strongly chemisorbs CO to yield mainly a surface-bound pentacarbonyl species. This suggests that the supported metal remains primarily in a zero-valent and well dispersed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson and G. Webb, Proc. Roy. Soc. A 341 (1974) 383.

    Google Scholar 

  2. J.R. Andersen, P.S. Elmes, R.F. Howe and D.E. Mainwaring, J. Catal. 50 (1977) 508.

    Google Scholar 

  3. Y.I. Yermakov,Proc. 7th Int. Symp. on Catalysis, Tokyo 1980, eds. T. Seiyama and K. Tanabe (Elsevier, Amsterdam, 1981).

    Google Scholar 

  4. G.M. Zanderighi, C. Dossi, R. Ugo, R. Psaro, A. Theolier, A. Choplin, L. d'Ornelas and J.M. Basset, J. Organomet. Chem. 296 (1985) 127.

    Google Scholar 

  5. J.M. Basset and A. Choplin, J. Mol. Catal. 21 (1983) 95.

    Google Scholar 

  6. H. Lamb, B.C. Gates and H. Knözinger, Angew. Chem. Int. Ed. Eng. 27 (1988) 1127.

    Google Scholar 

  7. A. Zecchina and C. Otero Areán, Catal. Rev. Sci. Eng. 35 (1993) 261.

    Google Scholar 

  8. C. Otero Areán and C. Mas Carbonell, Vib. Spectrosc. 8 (1995) 411.

    Google Scholar 

  9. D.F. Shriver, J. Organomet. Chem. 94 (1975) 259.

    Google Scholar 

  10. C.P. Horwitz and D.F. Shriver, Adv. Organomet. Chem. 23 (1984) 219.

    Google Scholar 

  11. F.G. Ciapetta and D.N. Wallace, Catal. Rev. Sci. Eng. 5 (1971) 67.

    Google Scholar 

  12. W.S. Greenlee and M.F. Farona, Inorg. Chem. 15 (1975) 2129.

    Google Scholar 

  13. Y.I. Yermakov, B.N. Kuznetsov and V.A. Zakharov,Catalysis by Supported Complexes (Elsevier, Amsterdam, 1981).

    Google Scholar 

  14. D.C. Bailey and S.H. Langer, Chem. Rev. 81 (1981) 109.

    Google Scholar 

  15. J. Goldwasser, J. Engelhardt and W.K. Hall, J. Catal. 70 (1981) 275.

    Google Scholar 

  16. C.P. Nicolaides and B.C. Gates, J. Mol. Catal. 35 (1986) 391.

    Google Scholar 

  17. A.S. Fung, M.J. Kelly and B.C. Gates, J. Mol. Catal. 71 (1992) 215.

    Google Scholar 

  18. A.F. Danilyuk, V.L. Kuznetsov, A.P. Shepelin, P.A. Zhdan, N.G. Maksimov, G.I. Magomedov and Y.I. Yermakov, Kinet. Katal. 24 (1983) 919.

    Google Scholar 

  19. W.P. McKenna, B.E. Higgins and E.M. Eyring, J. Mol. Catal. 31 (1985) 199.

    Google Scholar 

  20. M.S. Nacheff, L.S. Kraus, M. Ichikawa, B.M. Hoffman, J.B. Butt and W.M.H. Sachtler, J. Catal. 106 (1987) 263.

    Google Scholar 

  21. M. Komiyama, K. Yamamoto and Y. Ogino, J. Mol. Catal. 56 (1989) 78.

    Google Scholar 

  22. A. Zecchina, E. Escalona Platero and C. Otero Areán, J. Mol. Catal. 45 (1988) 373.

    Google Scholar 

  23. D.S. McIver, H.H. Tobin and R.T. Barth, J. Catal. 2 (1963) 485.

    Google Scholar 

  24. M. Churchill, K.N. Amohand H.J. Wasserman, Inorg. Chem. 20 (1981) 1609.

    Google Scholar 

  25. R. Larsson, R. Lykvist and B. Rebenstorf, Z. Phys. Chem. Leipzig 263 (1982) 1089.

    Google Scholar 

  26. E. Escalona Platero, D. Scarano, G. Spoto and A. Zecchina, Faraday Discussions Chem. Soc. 80 (1985) 183.

    Google Scholar 

  27. G. Pacchioni, G. Cogliandro and P.S. Bagus, Int. J. Quantum Chem. 42 (1992) 1115.

    Google Scholar 

  28. D. Scarano, G. Spoto, S. Bordiga, S. Coluccia and A. Zecchina, J. Chem. Soc. Faraday Trans. 88 (1992) 291.

    Google Scholar 

  29. L. Marchese, S. Bordiga, S. Coluccia, G. Martra and A. Zecchina, J. Chem. Soc. Faraday Trans. 89 (1993) 3483.

    Google Scholar 

  30. A. Zecchina, E. Escalona Platero and C. Otero Areán, J. Catal. 107 (1987) 244.

    Google Scholar 

  31. N. Flitcroft, D.K. Huggins and H.D. Kaez, Inorg. Chem. 3 (1964) 1123.

    Google Scholar 

  32. H. Haas and R.K. Sheline, J. Chem. Phys. 47 (1967) 2996.

    Google Scholar 

  33. A.S. Fung, P.A. Tooley, M.H. Kelley, D.C. Koningsberger and B.C. Gates, J. Phys. Chem. 95 (1991) 225, and references therein.

    Google Scholar 

  34. G. Broden, T.N. Rhodin, C. Brukner, R. Benbow and Z. Hurysh, Surf. Sci. 59 (1976) 593.

    Google Scholar 

  35. M. Primet, J. Chem. Soc. Faraday Trans I 74 (1978) 2570.

    Google Scholar 

  36. P.S. Braterman,Metal Carbonyl Spectra (Academic Press, London, 1975).

    Google Scholar 

  37. J.C. Hileman, D.K. Huggins and H.D. Kaesz, Inorg. Chem. 1 (1962) 933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escalona Platero, E., de Peralta, F.R. & Otero Areán, C. Vapour phase deposition and thermal decarbonylation of Re2(CO)10 on gamma-alumina: infrared studies. Catal Lett 34, 65–73 (1995). https://doi.org/10.1007/BF00808323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808323

Keywords

Navigation