Advertisement

Catalysis Letters

, Volume 34, Issue 1–2, pp 41–50 | Cite as

Pulse-MS study of the partial oxidation of methane over Ni/La2O3 catalyst

  • Y. H. Hu
  • E. Ruckenstein
Article

Abstract

The CH4 direct oxidation reaction was studied at 600°C by the pulse-MS transient method over the Ni/La2O3 catalyst. Over the freshly prepared catalyst (which contains NiO), the CO selectivity and CH4 conversion increased and attained constant values as the number of CH4/O2 pulses increased. Over the reduced catalyst (containing Ni), as the number of CH4/O2 pulses increased, the CO selectivity and CH4 conversion decreased before they reached the same constant values as over the fresh catalyst. The CO selectivity increased as the residence time of the reactants shortened, implying that CO was directly generated without the preformation of CO2. The activation energies of CH4 dehydrogenation in the presence and absence of oxygen have been calculated using the bond-order conservation Morse-potential approach. The results indicate (1) the direct dehydrogenation steps are more likely to occur; (2) the transient oxygen species adsorbed on-top of the metal atoms promote dehydrogenation; (3) the oxygen species adsorbed on bridge or hollow sites do not promote dehydrogenation.

Keywords

methane oxidation MS nickel lanthanum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.E. Killer and M.M. Bhasin, J. Catal. 73 (1982) 91.Google Scholar
  2. [2]
    G.J. Hutchings, M.S. Scurell and J.R. Woodhouse, Chem. Soc. Rev. 18 (1989) 25.Google Scholar
  3. [3]
    H.D. Cesser, N.R. Hunter and C.B. Prakash, Chem. Rev. 85 (1985) 235.Google Scholar
  4. [4]
    N.D. Spencer and C.J. Pereira, J. Catal. 116 (1989) 399.Google Scholar
  5. [5]
    A.T. Ashcroft, A.K. Cheetham, J.S. Food, M.L.H. Green, C.P. Grey, A.J. Murrell and P.D.F. Vernon, Nature 344 (1990) 319.Google Scholar
  6. [6]
    D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and J.H. Lunsford, J. Catal. 132 (1991) 117.Google Scholar
  7. [7]
    D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.Google Scholar
  8. [8]
    D.A. Hickman and L.D. Schmidt, J. Catal. 138 (1992) 267.Google Scholar
  9. [9]
    V.R. Choudhary, V.H. Rane and A.M. Rajput, Catal. Lett. 22 (1993) 289.Google Scholar
  10. [10]
    V.R. Choudhary, A.M. Rajput and B.J. Prabhakar, J. Catal. 139 (1993) 326.Google Scholar
  11. [11]
    Y.H. Hu, C.T. Au and H.L. Wan, Chin. Sci. Bull., in press.Google Scholar
  12. [12]
    C.T. Au, Y.H. Hu and H.L. Wan, Catal. Lett. 27 (1994) 199.Google Scholar
  13. [13]
    D.L. Trimm, Catal. Rev. Sci. Eng. 16 (1977) 155.Google Scholar
  14. [14]
    J.R. Rostrup-Nielsen, in:Catalysis: Science and Technology, Vol. 5, eds. J.R. Anderson and M. Boudart (Springer, New York, 1984).Google Scholar
  15. [15]
    V.R. Choudhary, A.M. Rajput and B.J. Prabhakar, Catal. Lett. 15 (1992) 363.Google Scholar
  16. [16]
    J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. Tork, A.T. Ashcroft and P.D. Battle, Catal. Lett. 22 (1993) 229.Google Scholar
  17. [17]
    D. Dissanayake, M.P. Rosynek and J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.Google Scholar
  18. [18]
    M.C.E. Prettre and M. Perrin, Trans. Faraday Soc. 42 (1946) 335.Google Scholar
  19. [19]
    E. Schustorovich, Adv. Catal. 37 (1990) 101.Google Scholar
  20. [20]
    E. Schustorovich, J. Catal. 113 (1988) 341.Google Scholar
  21. [21]
    E. Schustorovich, J. Am. Chem. Soc. 106 (1984) 6479.Google Scholar
  22. [22]
    R.A. Campbell, J.P. Lenz and D.W. Goodman, Catal. Lett. 17 (1993) 39.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Y. H. Hu
    • 1
  • E. Ruckenstein
    • 1
  1. 1.Department of Chemical EngineeringState University of New York at BuffaloAmherstUSA

Personalised recommendations