Skip to main content
Log in

Correlated rotation of aryl substituents in diarylmethyl-, diarylphosphine- and related fragments. An empirical force field study

Korrelierte Rotation von Arylringen in Diarylmethyl-, Diarylphosphin- und verwandten Fragmenten. Eine Untersuchung mit Hilfe der empirischen Kraftfeldmethode

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

Ground state structures and conformational interconversion mechanisms of 25 diaryl compoundsAr 2 Z (Z=CH2, CHR, CH(OH), P-CH3) were analyzed. For tetra(ortho-alkyl)substituted diaryls the cogwheeling mechanism was found as the threshold mechanism. A shift from the cogwheeling mechanism to interconversions via 2-ring flips is found in di(ortho-alkyl)substituted compounds. The ground state structures and interconversion mechanisms of diarylmethylphosphines are very similar to those of the related 1,1-diarylethanes. The interconversion barrier for correlated conrotation of the aryl rings in di(tert-butylphenyl)methanol (20) was measured by low temperature NMR and is in excellent agreement with the calculated value for the 2-ring flipT2 (ΔG (exp.)=48 kJ mol−1; ΔG (calc.)=54 kJ mol−1).

Zusammenfassung

Die Grundzustandskonformationen und die konformativen Interkonversions-mechanismen von 25 DiarylverbindungenAr 2 Z (Z=CH2, CHR, CH(OH), P-CH3) wurden analysiert. Für tetra(ortho-alkyl)substituierte Diaryle wurde der cogwheeling-Mechanismus als der Interkonversionsmechanismus niedrigster Energie ermittelt. In di(ortho-alkyl)substituierten Verbindungen werden nicht der cogwheeling-Mechanismus sondern 2-ring flips als Interkonversionsmechanismen gefunden. Die Grundzustände und Interkonversionsmechanismen für Diarylmethylphosphine sind sehr ähnlich jenen der verwandten 1,1-Diarylethane. Die Interkonversionsbarriere für die korrelierte Bewegung der Arylringe von Di(tert-butylphenyl)methanol (20) wurde mittels Tieftemperatur-NMR-Spektroskopie ermittelt und ist in sehr guter Übereinstimmung mit dem berechneten Wert für den 2-Ring flipT2 (ΔG (exp.)=48 kJ mol−1; ΔG (calc.)=54 kJ mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mislow K. (1989) Chemtracts-Org. Chem.2: 151

    Google Scholar 

  2. Willem R., Gielen M., Hoogzand C., Pepermans H. (1985) In: Gielen M. F. (ed.) Advances in Dynamic Stereochemistry, Vol. 1, ch. 5. Freud Publishing House, London

    Google Scholar 

  3. Mislow K. (1976) Acc. Chem. Res.9: 26

    Google Scholar 

  4. Weissensteiner W., Scharf J., Schlögl K. (1987) J. Org. Chem.52: 1210

    Google Scholar 

  5. Lauer D., Staab K. A. (1969) Chem. Ber.102: 1631

    Google Scholar 

  6. Finnochiaro P. (1975) Gazz. Chim. Ital.105: 149

    Google Scholar 

  7. Ackerman O. S., Coops J. (1967) Rec. Trav. Chem. Pays-Bas86: 55

    Google Scholar 

  8. Akkerman O. S. (1970) Rec. Trav. Chim. Pays-Bas89: 673

    Google Scholar 

  9. Lam W. Y., Martin J. C. (1981) J. Org. Chem.46: 4458, 4462

    Google Scholar 

  10. Biali S. E., Nugiel D. A., Rappoport Z. (1989) J. Am. Chem. Soc.111: 846

    Google Scholar 

  11. Schlögl K., Weissensteiner W., Widhalm M. (1982) J. Org. Chem.47: 5025

    Google Scholar 

  12. Finnochiaro O., Gust D., Hounshell W. D., Hummel J. P., Paravina P., Mislow K. (1976) J. Am. Chem. Soc.98: 4945

    Google Scholar 

  13. Iwamura H., Mislow K. (1988) Acc. Chem. Res.21: 175

    Google Scholar 

  14. Bergman J. J., Chandler W. D. (1972) Can. J. Chem.50: 353

    Google Scholar 

  15. Hounshell W. D., Iroff L. D., Iverson D. J., Wroczynsky R. J., Mislow K. (1980) Isr. J. Chem.20: 65

    Google Scholar 

  16. Iroff L. D., (1979) Ph. D. Thesis, Princeton University

  17. In a previous paper [4] we have used the term conrotatory for the cogwheeling effect (1-ring flips) and disrotatory for 2-ring and 0-ring flips. To avoid difficulties with triarylsystemsAr 3 X the terms correlated disrotation (associated with the 1-ring flip) and correlated conrotation (2-ring flip and 0-ring flips) are used in this paper [1].

  18. Gust D., Mislow K. (1973) J. Am. Chem. Soc.95: 1535

    Google Scholar 

  19. Mannschreck A., Ernst L. (1971) Chem. Ber.104: 228

    Google Scholar 

  20. Hunter G., McKay R. L., Kremminger P., Weissensteiner W. (1991) J. Chem. Soc., Dalton Trans.: 3349

  21. Siegel J., Gutiérrez A., Schweizer W. B., Ermer O., Mislow K. (1986) J. Am. Chem. Soc.108: 1569

    Google Scholar 

  22. Rapport Z., Biali S. E., Kaftory M. (1990) J. Am. Chem. Soc.112: 7742

    Google Scholar 

  23. Akkerman O. S. (1967) Rec. Trav. Chim. Pays-Bas86: 1018

    Google Scholar 

  24. Allinger N. L. Quantum Chemistry Program Exchange No MM2 (87), Indiana University, Bloomington, Indiana, IN 47405, U. S. A.

  25. Nachbar R. B., Mislow K. Quantum Chemistry Program Exchange No 514, Indiana University, Bloomington, Indiana, IN 47405, U. S. A.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissensteiner, W. Correlated rotation of aryl substituents in diarylmethyl-, diarylphosphine- and related fragments. An empirical force field study. Monatsh Chem 123, 1135–1147 (1992). https://doi.org/10.1007/BF00808276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808276

Keywords

Navigation