Skip to main content
Log in

Structure and function of the yeast vacuolar membrane proton ATPase

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Our current work on a vacuolar membrane proton ATPase in the yeastSaccharomyces cerevisiae has revealed that it is a third type of H+-translocating ATPase in the organism. A three-subunit ATPase, which has been purified to near homogeneity from vacuolar membrane vesicles, shares with the native, membrane-bound enzyme common enzymological properties of substrate specificities and inhibitor sensitivities and are clearly distinct from two established types of proton ATPase, the mitochondrial F0F1-type ATP synthase and the plasma membrane E1E2-type H+-ATPase. The vacuolar membrane H+-ATPase is composed of three major subunits, subunita (M r =67 kDa),b (57kDa), andc (20 kDa). Subunita is the catalytic site and subunitc functions as a channel for proton translocation in the enzyme complex. The function of subunitb has not yet been identified. The functional molecular masses of the H+-ATPase under two kinetic conditions have been determined to be 0.9–1.1×105 daltons for single-cycle hydrolysis of ATP and 4.1–5.3×105 daltons for multicycle hydrolysis of ATP, respectively.N,N′-Dicyclohexylcarbodiimide does not inhibit the former reaction but strongly inhibits the latter reaction. The kinetics of single-cycle hydrolysis of ATP indicates the formation of an enzyme-ATP complex and subsequent hydrolysis of the bound ATP to ADP and Pi at a 7-chloro-4-nitrobenzo-2-oxa-1,3-diazolesensitive catalytic site. Cloning of structural genes for the three subunits of the H+-ATPase (VMA1, VMA2, andVMA3) and their nucleotide sequence determination have been accomplished, which provide greater advantages for molecular biological studies on the structure-function relationship and biogenesis of the enzyme complex. Bioenergetic aspects of the vacuole as a main, acidic compartment ensuring ionic homeostasis in the cytosol have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanidem-chlorophenyl hydrazone

DCCD:

N,N′-dicyclohexylcarbondiimide

DES:

diethylstilbestrol

DIDS:

4,4′-diisothiocyano-2,2′-stilbene disulfonic acid

NBD-Cl:

7-chloro-4-nitrobenzo-2-oxa-1,3-diazole

Pi:

inorganic phosphate

SDS:

sodium dodecylsulfate

SF6847:

3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile

SITS:

4-acetamide-4′-isothiocyanatostilbene-2,2′-disulfonic acid

ZW3-14:

N-tetradecyl-N,N′-dimethyl-3-ammonio-1-propanesulfonate

References

  • Al-Awquati, Q (1986)Annu. Rev. Cell Biol. 2, 179–199.

    Google Scholar 

  • Anraku, Y. (1987a) InBioenergetics: Structure and Function of Energy Transducing Systems (Ozawa, T., and Papa, S., eds.), Japan Scientific Societies Press and Academic Press, Tokyo and New York, pp. 249–262.

    Google Scholar 

  • Anraku, Y. (1987b) InPlant Vacuoles (Marin B., ed.), Plenum Press, New York and London, pp. 255–265.

    Google Scholar 

  • Anraku, Y., Uchida, E., and Ohsumi, Y. (1987) InPerspectives of Biological Energy Transduction (Mukohata, Y., Morales, M. F., and Fleischer, S., eds.), Academic Press, Yokyo and New York, pp. 309–313.

    Google Scholar 

  • Bowman, B. J., and Bowman, E. J. (1986)J. Membr. Biol. 94, 83–97.

    Google Scholar 

  • Bowman, B. J., Berenski, C. J., and Jung, C. Y. (1985)J. Biol. Chem. 260, 8726–8730.

    Google Scholar 

  • Bowman, E. J., Mandala, S., Taiz, L., and Bowman, B. J. (1986)Proc. Natl. Acad. Sci. USA 83, 48–52.

    Google Scholar 

  • Bowman, B. J., Allen, R., Wechser, M. A., and Bowman, E. J. (1988a)J. Biol. Chem. 263, 14002–14007.

    Google Scholar 

  • Bowman, E. J., Tenney, K., and Bowman, B. J. (1988b)J. Biol. Chem. 263, 13994–14001.

    Google Scholar 

  • Cross, R. L., Grubmeyer, C., Penefsky, H. S. (1982)J. Biol. Chem. 257, 12101–12105.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988)J. Biol. Chem. 263, 6012–6015.

    Google Scholar 

  • De Vries, H. (1985)Jahrb. Wiss. Bot. 16, 465–598.

    Google Scholar 

  • Duncan, T. M., and Senior, A. E. (1985)J. Biol. Chem. 260, 4901–4907.

    Google Scholar 

  • Futai, M., Noumi, T., and Maeda, M. (1988)J. Bioenerg. Biomembr. 20, 41–58.

    Google Scholar 

  • Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982)J. Biol. Chem. 257, 12092–12100.

    Google Scholar 

  • Hirata, R., Ohsumi, Y., and Anraku, Y. (1989)FEBS Lett. 244, 397–401.

    Google Scholar 

  • Kaestner, K. H., Randall, S. K., and Sze, H. (1988)J. Biol. Chem. 263, 1282–1287.

    Google Scholar 

  • Kakinuma, Y., Ohsumi, Y., and Anraku, Y. (1981)J. Biol. Chem. 256, 10859–10863.

    Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988a)J. Bacteriol. 170, 2683–2686.

    Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988b)J. Bacteriol. 170, 2687–2691.

    Google Scholar 

  • Lai, S., Randall, S. K., and Sze, H. (1988)J. Biol. Chem. 263, 16731–16737.

    Google Scholar 

  • Lichke, L. P., and Okorokov, L. A. (1985)FEBS Lett. 187, 349–352.

    Google Scholar 

  • Mandala, S., and Taiz, L. (1985)Plant Physiol. 78, 327–333.

    Google Scholar 

  • Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1988)Proc. Natl. Acad. Sci. USA 85, 5521–5524.

    Google Scholar 

  • Manolson, M. F., Rea, P. A., and Poole, R. J. (1985)J. Biol. Chem. 260, 12273–12279.

    Google Scholar 

  • Manolson, M. F., Percy, J. M., Apps, D. K., Xie, X. S., Stone, D. K., and Poole, R. J. (1987) InProceedings of the Membrane Protein Symposium (Goheen, S. C., ed.), Bio-Rad, Richmond, California, pp. 427–434.

    Google Scholar 

  • Manolson, M. F., Ouellette, B. F. F., Filion, M., and Poole, R. J. (1988)J. Biol. Chem. 263, 17987–17994.

    Google Scholar 

  • Marin, B. P., Preisser, J., and Komor, E. (1985)Eur. J. Biochem. 151, 131–140.

    Google Scholar 

  • Matile, P. (1975)The Lytic Compartment of Plant Cells, Springer-Verlag, Wien and New York, pp. 1–175.

    Google Scholar 

  • Mellman, I., Fuchs, R., and Helenius, A. (1986)Annu. Rev. Biochem. 55, 663–700.

    Google Scholar 

  • Nelson, N. (1988)Plant Physiol. 86, 1–3.

    Google Scholar 

  • Nelson, H., Mandiyan, S., and Nelson, N. (1989)J. Biol. Chem. 264, 1775–1778.

    Google Scholar 

  • Noumi, T., Taniai, M., Kanazawa, H., and Futai, M. (1986)J. Biol. Chem. 261, 9196–9201.

    Google Scholar 

  • Ohkuma, S. (1987) InLysosomes: Their Role in Protein Breakdown (Glaumann, H., and Ballard, F. J., eds.), Academic Press, Newe York, pp. 115–148.

    Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1981)J. Biol. Chem. 256, 2079–2082.

    Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1983)J. Biol. Chem. 258, 5614–5617.

    Google Scholar 

  • Ohsumi, Y., Kitamoto, K., and Anraku, Y. (1988)J. Bacteriol. 170, 2676–2682.

    Google Scholar 

  • Randall, S. K., and Sze, H. (1987)J. Biol. Chem. 262, 7135–7141.

    Google Scholar 

  • Rudnick, G. (1986)Annu. Rev. Physiol. 48, 403–413.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., and Sanders, D. (1988)J. Biol. Chem. 263, 14745–14752.

    Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984a)J. Biol. Chem. 259, 11505–11508.

    Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984b)J. Biol. Chem. 259, 11509–11511.

    Google Scholar 

  • Sze, H. (1985)Annu. Rev. Plant Physiol. 36, 175–208.

    Google Scholar 

  • Tanifuji, M., Sato, M., Wada, Y., Anraku, Y., and Kasai, M. (1988)J. Membr. Biol. 106, 47–55.

    Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1985)J. Biol. Chem. 260, 1090–1095.

    Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1988a)J. Biol. Chem. 263, 45–51.

    Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1988b) InMethods in Enzymology (Biomembrane, Part Q) (Fleischer, S., and Fleischer, B., eds.), Vol. 157, Academic Press, New York, pp. 544–561.

    Google Scholar 

  • Wada, Y., Ohsumi, Y., and Anraku, Y. (1986)Cell Struct. Funct. 11, 533.

    Google Scholar 

  • Wada, Y., Ohsumi, Y., Tanifuji, M., Kasai, M., and Anraku, Y. (1987)J. Biol. Chem. 262, 17260–17263.

    Google Scholar 

  • Yoshihisa, T., Ohsumi, Y., and Anraku, Y. (1988)J. Biol. Chem. 263, 5158–5163.

    Google Scholar 

  • Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988)J. Biol. Chem. 263, 9102–9112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anraku, Y., Umemoto, N., Hirata, R. et al. Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr 21, 589–603 (1989). https://doi.org/10.1007/BF00808115

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808115

Key Words

Navigation