Amino Acids

, Volume 1, Issue 1, pp 47–56 | Cite as

Excitatory and inhibitory amino acids involved in the high pressure nervous syndrome: Epileptic activity and hyperexcitability

  • F. Zinebi
  • L. Fagni
  • M. Hugon


Epileptic-like activities are observed in mammals exposed to ambient pressures higher than 20 atm. These symptoms are part of the so called “high pressure nervous syndrome”. In the search of the cellular mechanisms of this syndrome, we examined synaptic and intrinsic pressure-induced changes in the in vitro hippocampal slice preparation in the rat. We found that pressure (80 atm) depresses the efficiency of excitatory amino acidergic and inhibitory GABA synaptic transmissions, while it increases the intrinsic excitability of the CA1 pyramidal cells and induced multiple population spikes. The changes were associated with a selective increase in the effects of NMDA andL-homocysteate, while the postsynaptic effects of GABA was unchanged. NMDA antagonists and GABA synergistic drugs antagonized the pressure-induced hyperexcitability and multiple population spikes. These results suggest that pressure would decrease transmitter release at the tested excitatory and inhibitory synapses and would facilitate NMDA postsynaptic mechanisms. Thus, changes in both NMDA and GABA processes might be involved in the development of the high pressure nervous syndrome.


Pressure Excitatory amino acids GABA Hippocampal slice Synaptic transmission Excitability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen P, Bliss TVP, Skrede KK (1971) Exp Brain Res 13: 222–238Google Scholar
  2. 2.
    Bennett PB (1975) In: Bennett PB, Elliott DH (eds) The physiology and medecine of diving. Ballière-Tindall, London, pp 248–263Google Scholar
  3. 3.
    Brauer RW (1975) In: Bennett PB, Elliott DH (eds) The physiology and medecine of diving. Ballière-Tindall, London, pp 231–247Google Scholar
  4. 4.
    Brauer RW, Mansfield WM, Beaver RW, Gillen HW (1979) J Appl Physiol 46: 756–765Google Scholar
  5. 5.
    Collingridge GL, Kehl SG, McLennan H (1983a) J Physiol (Lond) 334: 19–31Google Scholar
  6. 6.
    Collingridge GL, Kehl SG, McLennan H (1983b) J Physiol (Lond) 334: 33–46Google Scholar
  7. 7.
    Crunelli V, Forda S, Kelly S (1985) Trends in Neurosci 8: 26–30Google Scholar
  8. 8.
    Dingledine R (1986) Trends in Neurosci 9: 47–49Google Scholar
  9. 9.
    Dunwiddie TV, Lynch GS (1978) J Physiol (Lond) 276: 353–357Google Scholar
  10. 10.
    Fagni L, Baudry M, Lynch G (1983) J Neurosci 3: 1538–1546Google Scholar
  11. 11.
    Fagni L, Soumireu-Mourat B, Carlier E, Hugon M (1985) Electroenceph Clin Neurophysiol 60: 267–275Google Scholar
  12. 12.
    Fagni L, Weiss M, Pellet J, Hugon M (1982) Electroenceph Clin Neurophysiol 53: 590–601Google Scholar
  13. 13.
    Fagni L, Zinebi F, Hugon M (1987) Exp Brain Res 65: 513–519Google Scholar
  14. 14.
    Fructus X, Agarate C, Naquet R, Rostain JC (1976) In: Lambersten GC (ed) Underwater physiology V. FASEB, Bethesda, MD, pp 21–33Google Scholar
  15. 15.
    Gilman SC, Colton JS, Hallenbeck JM (1986) J Appl Physiol 61: 2067–2073Google Scholar
  16. 16.
    Grossman Y, Kending JJ (1986) Undersea Biomed Res 13: 45–61Google Scholar
  17. 17.
    Haas HL, Schaerer B, Vosmansky M (1979) J Neurosci Meth 1: 323–325Google Scholar
  18. 18.
    Halsey MJ (1982) Physiol Rev 62: 1341–1377Google Scholar
  19. 19.
    Mayer ML, Westbrook GL (1985) Soc Neurosci Abstr 11: 785Google Scholar
  20. 20.
    Meldrum BS, Wardley-Smith B, Halsey M, Rostain JC (1983) Eur J Pharmacol 87: 501–502Google Scholar
  21. 21.
    Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Nature (Lond) 260: 538–540Google Scholar
  22. 22.
    Nowak L, Bregestovski LD, Deyong A, Davis A, Headrich RL, Tam RLT, Riggs AF (1986) Biochem Physic Acta 870: 552–563Google Scholar
  23. 23.
    Rostain JC, Dumas JC, Gardette B, Imbert JP, Lemaire C (1984) J Appl Physiol 57: 332–340Google Scholar
  24. 24.
    Rostain JC, Naquet R (1974) Rev EEG Neurophysiol Clin 4: 107–124Google Scholar
  25. 25.
    Storm-Mathisen J (1981) In: Di Chiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp 43–55Google Scholar
  26. 26.
    Wann KT, Macdonald AG (1980) Comp Biochem Physiol 66A: 1–12Google Scholar
  27. 27.
    Zinebi F, Fagni L, Hugon M (1988) Neuropharmacol 27: 57–65Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Zinebi
    • 1
  • L. Fagni
    • 2
  • M. Hugon
    • 1
  1. 1.Laboratoire de Biologie des Hautes Pressions, URA-CNRS 1330Faculté de Médecine NordMarseille Cedex 15France
  2. 2.C.C.I.P.E.MontpellierFrance

Personalised recommendations