Journal of Materials Science

, Volume 13, Issue 11, pp 2380–2384 | Cite as

Grain-boundary sliding and intergranular cavitation during superplastic deformation of α/β brass

  • T. Chandra
  • J. J. Jonas
  • D. M. R. Taplin


Intergranular and interphase cavitation in binary alpha/beta brass has been investigated in tension at 600° C under conditions of superplastic deformation. The sites for nucleation of cavities has been studied by quantitative metallography and the cavities are observed to nucleate preferentially atα-β interfaces. The process of cavitation is associated with grain boundary sliding and cavity nucleation occurs at points of stress concentrations in the sliding interfaces. Measurements of grain and phase boundary sliding at various interfaces demonstrate that sliding occurred onα-β boundaries more readily than onα-α andβ-gb interfaces. The predominance ofα-β interface cavitation is believed to be as a result of greater sliding at theα-β boundary and of an unbalanced accommodation of sliding adjacent to this type of boundary.


Cavitation Phase Boundary Step Height Superplastic Deformation Cavity Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Garofalo, “Ductility” (ASM, Ohio, 1967) p. 87.Google Scholar
  2. 2.
    D. M. R. Taplin, G. L. Dunlop, S. Sagat andR. H. Johnson, Proceedings of the 2nd Inter-American Conference on Materials Technology, Mexico City, Vol. 1 (ASME, New York, 1970) p. 253.Google Scholar
  3. 3.
    S. Sagat, P. A. Blenkinsop andD. M. R. Taplin,J. Inst. Metals 100 (1972) 268.Google Scholar
  4. 4.
    D. M. R. Taplin andS. Sagat,Mater. Sci. Eng. 9 (1972) 153.CrossRefGoogle Scholar
  5. 5.
    G. L. Dunlop, E. Shapiro, D. M. R. Taplin andJ. Crane,Met. Trans. 4 (1973) 2039.CrossRefGoogle Scholar
  6. 6.
    W. M. Morrison,Trans. Quart. ASM 61 (1968) 423.Google Scholar
  7. 7.
    A. R. Marder,Trans. TMS-AIME 245 (1969) 1337.Google Scholar
  8. 8.
    S. Sagat andD. M. R. Taplin,Acta. Met. 24 (1976) 307.CrossRefGoogle Scholar
  9. 9.
    A. Gittins andR. C. Gifkins,J. Aust. Inst. Met. 20 (1969) 177.Google Scholar
  10. 10.
    A. Eberhardt andB. Baudelet,J. Mater. Sci. 9 (1974) 865.CrossRefGoogle Scholar
  11. 11.
    T. Chandra, J. J. Jonas andD. M. R. Taplin,J. Aust. Inst. Met. 20 (1975) 220.Google Scholar
  12. 12.
    R. L. Bell andT. G. Langdon,J. Mater. Sci. 2 (1967) 313.CrossRefGoogle Scholar
  13. 13.
    R. C. Gifkins andT. G. Langdon,J. Inst. Met. 93 (1964–5) 847.Google Scholar
  14. 14.
    G. J. Cocks andD. M. R. Taplin,Metallurgica 75 (1967) 82.Google Scholar
  15. 15.
    D. McLean,J. Inst. Met. 85 (1956–7) 468.Google Scholar
  16. 16.
    R. G. Fleck, Ph.D. Thesis, University of Birmingham (1973).Google Scholar
  17. 17.
    J. Intrater andE. S. Machlin,Acta. Met. 7 (1959) 140.CrossRefGoogle Scholar
  18. 18.
    D. McLean, “Grain Boundaries in Metals” (Clarendon Press, Oxford, 1957) p. 79.Google Scholar
  19. 19.
    E. D. Hondros, “Interfaces”, edited by R. C. Gifkins (Butterworths, Melbourne, 1969) p. 77.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • T. Chandra
    • 1
  • J. J. Jonas
    • 2
  • D. M. R. Taplin
    • 3
  1. 1.Department of MetallurgyThe University of WollongongWollongongAustralia
  2. 2.Department of Metallurgical EngineeringMcGill UniversityMontrealCanada
  3. 3.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations