Journal of Materials Science

, Volume 13, Issue 11, pp 2313–2320 | Cite as

Orientation and temperature dependence of the flow stress in the intermetallic compound Ni3Ge single crystals

  • K. Aoki
  • O. Izumi


Tensile tests on Ni3Ge single crystals were carried out to make clear the mechanism of the positive temperature dependence of the CRSS and the work-hardening rate as a function of the tensile axis orientation below room temperature. Both the CRSS (τ) and the maximum work hardening rate (θ M) show positive temperature dependence even below room temperature. The increments ofτ andθ M are satisfactorily expressed by the Schmid factor ratio of the cube cross slip system to the primary octahedral one,N=(010) [¯101]/(111) [¯101 ]. Then, the positive temperature dependence of both the CRSS and the maximum work-hardening rate is thought to be governed by two mechanisms. One arises from the Kear—Wilsdorf mechanism, which depends on the orientation. The other seems to arise from the orientation-independent factor, although it is obscure at present.


Critical Resolve Shear Stress Orientation Dependence Cross Slip Ni3Ga Positive Temperature Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Westbrook,Trans. Metall. Soc. AIME 209 (1957) 898.Google Scholar
  2. 2.
    S. M. Copley andB. H. Kear,ibid. 239 (1967) 977.Google Scholar
  3. 3.
    P. H. Thornton, R. G. Davies andT. L. Johnston,Met. Trans. 1 (1970) 207.Google Scholar
  4. 4.
    J. A. Lopez andG. F. Hancock,Phys. Stat. Sol. 2 (1970) 469.CrossRefGoogle Scholar
  5. 5.
    R. D. Rawlings andA. Staton-Bevan,J. Mater. Sci. 10 (1975) 505.CrossRefGoogle Scholar
  6. 6.
    K. Aoki andO. Izumi,J. Japan Inst. Metals 39 (1975) 1282.Google Scholar
  7. 7.
    H-R. Pak, T. Saburi andS. Nenno,Tram. JIM 18 (1977) 617.Google Scholar
  8. 8.
    Idem, J. Japan Inst. Metals 39 (1975) 1215.Google Scholar
  9. 9.
    S. Takeuchi andE. Kuramoto,Acta Met. 21 (1973) 415.CrossRefGoogle Scholar
  10. 10.
    R. A. Mulford andD. P. Pope,ibid. 21 (1973) 1975.CrossRefGoogle Scholar
  11. 11.
    T. Saburi, T. Hamana, S. Nenno andH-R. Pak,Japan J. Appl. Phys. 16 (1977) 267.CrossRefGoogle Scholar
  12. 12.
    K. Aoki, thesis, Tohoku University (1976).Google Scholar
  13. 13.
    A. E. Staton-Bevan andR. D. Rawlings,Phys. Stat. Sol. 29 (1975) 613.CrossRefGoogle Scholar
  14. 14.
    B. H. Kear andH. G. F. Wilsdorf,Trans. Metall. Soc. AIME 224 (1962) 382.Google Scholar
  15. 15.
    K. Aoki andO. Izumi,Acta Met. 26 (1978) in press.Google Scholar
  16. 16.
    S. J. Liang andD. P. Pope,ibid. 25 (1977) 485.CrossRefGoogle Scholar
  17. 17.
    P. A. Flinn,Trans. Metall. Soc. AIME 218 (1960) 145.Google Scholar
  18. 18.
    N. S. Stoloff andR. G. Davies,Prog Mater. Sci. 13 (1966) 3.Google Scholar
  19. 19.
    A. E. Vidoz andL. M. Brown,Phil. Mag. 7 (1962) 1167.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • K. Aoki
    • 1
  • O. Izumi
    • 1
  1. 1.The Research Institute for Iron, Steel and Other MetalsTohoku UniversitySendaiJapan

Personalised recommendations