Skip to main content
Log in

The effect of reaction conditions on montmorillonite-catalysed peptide formation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Oligomerization of glycine (gly) and diglycine (gly2) on montmorillonite was performed as cyclic, drying-wetting process at temperatures below 100°C, under varying reaction conditions. The influence of substrate/clay ratio, temperature and pH was found to be different for amino acid (AA) dimerization, cyclic anhydride (CA) formation and peptide chain elongation. High temperatures and neutral pH favour CA formation over diglycine production. An AA/catalyst ratio of 0.2 mmol/g leads to optimal yields. This supports the assumption that amino acid dimerization and CA formation take place at the edges of clay particles. Peptide chain elongation, starting from gly2, produces higher yields at higher temperatures and neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lahav, D. White and S. Chang, Science 201 (1978) 67.

    Google Scholar 

  2. J.G. Lawless and N. Levi, J. Mol. Evol. 13 (1979) 281.

    Google Scholar 

  3. D.H. White and J.C. Erickson, J. Mol. Evol. 16 (1980) 279.

    Google Scholar 

  4. D.H. White and J.C. Erickson, J. Mol. Evol. 17 (1981) 19.

    Google Scholar 

  5. B.M. Rode, J. Bujdák and A.H. Eder, Trends Inorg. Chem. 3 (1993) 45.

    Google Scholar 

  6. J. Bujdák, H. Slosiariková, N. Texler, M. Schwendinger and B.M. Rode, Monatsh. Chemie 125 (1994) 1033.

    Google Scholar 

  7. J. Bujdák, A. Eder, Y. Yongyai, K. Faybíková and B.M. Rode, Origins Life Evol. Biosph. 25 (1995) 431.

    Google Scholar 

  8. D.H. White, M. Kenedy and J. Macklin, Origins Life Evol. Biosph. 14 (1984) 273.

    Google Scholar 

  9. J. Bujdák, A. Eder, Y. Yongyai, K. Faybíková and B.M. Rode, J. Inorg. Biochem. 61 (1996) 69.

    Google Scholar 

  10. B. Číčel, P. Komadel, E. Bednáriková and J. Madejová, Geol. Carpathica, Ser. Clays 1 (1992) 3;

    Google Scholar 

  11. J. Madejová, P. Komadel, B. Číčel, Geol. Carpathica, Ser. Clays 1 (1992) 9.

    Google Scholar 

  12. D.J. Greenland, R.H. Laby and J.P. Quirk, Trans. Faraday Soc. 61 (1965) 2024.

    Google Scholar 

  13. W.F. Hofer, Clays Clay. Miner. 18 (1970) 97;

    Google Scholar 

  14. M.J. Frissel and G.H. Bolt, Soil Sci. 94 (1962) 284;

    Google Scholar 

  15. R. Haque and R. Sexton, J. Coll. Interf. Sci. 27 (1968) 818.

    Google Scholar 

  16. J.P. Rupert, W.T. Granquist and T.J. Pinnavaia, in:Chemistry of Clays and Clay Minerals, ed. A.C.D. Newman (Longman, Singapore, 1987) ch. 6.

    Google Scholar 

  17. D.J. Greenland, R.H. Laby and J.P. Quirk, Trans. Faraday Soc. 61 (1965) 2013.

    Google Scholar 

  18. N. Lahav and S. Chang, J. Mol. Evol. 8 (1976) 357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujdák, J., Le Son, H., Yongyai, Y. et al. The effect of reaction conditions on montmorillonite-catalysed peptide formation. Catal Lett 37, 267–272 (1996). https://doi.org/10.1007/BF00807765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807765

Keywords

Navigation