Advertisement

Catalysis Letters

, Volume 37, Issue 3–4, pp 229–233 | Cite as

Dispersion of phosphovanadates on silica gel chemically modified with silane coupling agents having an amino group and their catalytic activities for methanol oxidation

  • Yoshihisa Hanada
  • Masahiko Kamada
  • Kenji Umemoto
  • Hiroshi Kominami
  • Yoshiya Kera
Article

Abstract

Phosphotetradecavanadate (PV14) was dispersed on a silica gel chemically modified with a silane coupling agent (AnPS-SiO2) by an equilibrium adsorption method. The PV14 contents approximately correlated with the V(IV) spin contents by ESR. PV14 dispersed on AnPS-SiO2 resulted in a quite high selectivity for formaldehyde such as 97% in methanol oxidation.

Keywords

silane coupling agents chemical modification of silica gel phosphotetradecavanadate methanol oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1a]
    M. Otake and T. Onoda, Shokubai 18 (1976) 169;Google Scholar
  2. [1b]
    Y. Izumi and M. Otake, Kagaku Sosetu 34 (1982) 116, and references therein.Google Scholar
  3. [2a]
    M. Misono, K. Sakata, Y. Yoneda and W.Y. Lee, in:7th Int. Congr. on Catalysis, Tokyo 1980 (Kodansha/Elsevier, Tokyo/Amsterdam, 1981) p. 1047;Google Scholar
  4. [2b]
    M. Misono, Catal. Rev. Sci. Eng. 29 (1987) 269.Google Scholar
  5. [3]
    M.T. Pope,Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983), and references therein.Google Scholar
  6. [4]
    K. Bruckman, M. Che, J. Haber and J.-M. Tatibouet, Catal. Lett. 25 (1994) 225.Google Scholar
  7. [5]
    J.-M. Tatibouet, M. Che, M. Amirouche, M. Fournier and C. Rocchiccioli-Deltcheff, J. Chem. Soc. Chem. Commun. (1988) 1260.Google Scholar
  8. [6] (a)
    M. Kamada and Y. Kera, Chem. Lett. (1991) 1831;Google Scholar
  9. [6] (b)
    H. Nishijima, M. Kamada and Y. Kera, Chem. Express 8 (1993) 113;Google Scholar
  10. [6] (c)
    M. Kamada, H. Nishijima and Y. Kera, Bull. Chem. Soc. Jpn. 66 (1993) 3565.Google Scholar
  11. [7]
    P. Tundo and P. Venturello, J. Am. Chem. Soc. 101 (1979) 6606.Google Scholar
  12. [8]
    R. Kato, A. Kobayashi and Y. Sasaki, Inorg. Chem. 21 (1982) 240.Google Scholar
  13. [9]
    H. Wu, J. Biol. Chem. 43 (1920) 218.Google Scholar
  14. [10a]
    Y. Kera, M. Hasegawa and M. Tokuno, J. Fac. Sci. Technol. Kinki Univ. 29 (1993) 63;Google Scholar
  15. [10b]
    Y. Kera and Y. Matsukaze, J. Phys. Chem. 90 (1986) 5752.Google Scholar
  16. [11]
    D.L. Kepart,Comprehensive Inoganic Chemistry IV (1973) p. 607.Google Scholar
  17. [12]
    P.J. Pomonis and J.C. Vickerman, Faraday Discussions Chem. Soc. 72 (1981) 247.Google Scholar
  18. [13]
    A. Baiker and D. Monti, J. Catal. 91 (1985) 361.Google Scholar
  19. [14]
    D. Gasser and A. Baiker, J. Catal. 113 (1988) 325.Google Scholar
  20. [15]
    J.G. Highfield and J.B. Moffat, J. Catal. 95 (1985) 108.Google Scholar
  21. [16a]
    K. Bruckman, J. Haber and E.M. Serwicka, Faraday Discussions Chem. Soc. 87 (1989) 173;Google Scholar
  22. [16b]
    K. Bruckman, J.-M. Tatibouet, M. Che, E. Serwicka and J. Haber, J. Catal. 139 (1993) 455.Google Scholar
  23. [17]
    C.M. Sorensen and R.S. Weber, J. Catal. 142 (1993) 1.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Yoshihisa Hanada
    • 1
  • Masahiko Kamada
    • 1
  • Kenji Umemoto
    • 1
  • Hiroshi Kominami
    • 1
  • Yoshiya Kera
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and EngineeringKinki UniversityOsakaJapan

Personalised recommendations