Catalysis Letters

, Volume 37, Issue 3–4, pp 167–172 | Cite as

The dissociation kinetics of H2S over an alumina supported Co-Mo sulphide catalyst

  • S. C. Moffat
  • A. A. Adesina


In this study, a high surface area 4Co∶6Mo∶100γ-Al2O3 sulphide prepared using precipitation from homogeneous solution (PFHS) has been used for the catalytic splitting of hydrogen sulphide into H2 and elemental sulphur. The activity of this new formulation was significantly better than previously reported recipes. Kinetic data collected over a wide range of H2S partial pressures between 883 and 983 K revealed that, although the decomposition followed a first-order law, a mechanism involving H2S adsorption on co-ordinative unsaturation sites of the Co-Mo sulphide catalyst gave a Langmuir-Hinshelwood rate expression that yielded satisfactory model parameters. In particular, the scission of the surface H-S bond appeared to be the rate determining step.


dissociation kinetics Co-Mo sulphide H2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.A. Fletcher, J. Noring and J. Murray, Int. J. Hydr. Energy 9 (1984) 587.Google Scholar
  2. [2]
    M.E.D. Raymont, Hydrocarbon Process. 54 (1975) 139.Google Scholar
  3. [3]
    D. Kirk-Othmer,Encyclopedia Chem. Tech. Vol. 22 (1984).Google Scholar
  4. [4]
    V. Kaloidas and N.G. Papayannakos, Chem. Eng. Sci. 44 (1989) 2493.Google Scholar
  5. [5]
    A.A. Adesina, V. Meeyoo and G. Foulds, Int. J. Hydr. Energy (1995), in press.Google Scholar
  6. [6]
    O.A. Salman, A. Bishara and A. Marafi, Energy 12 (1987) 1227.Google Scholar
  7. [7]
    D. Berk, R. Heidemann, W. Svrcek and L. Behie, Can. J. Chem. Eng. 69 (1991) 994.Google Scholar
  8. [8]
    H. Alqahthany, P.-H. Chiang, D. Eng and M. Stoukides, Catal. Lett. 13 (1992) 289.Google Scholar
  9. [9]
    K. Fukuda, M. Dokiya, T. Kameyama and Y. Kotera, Ind. Eng. Chem. Fund. 17 (1978) 243.Google Scholar
  10. [10]
    T. Chivers, J.B. Hyne and C. Lau, Int. J. Hydr. Energy 5 (1980) 499.Google Scholar
  11. [11]
    L.M. Al-Shamma and S.A. Naman, Int. J. Hydr. Energy 15 (1987) 1.Google Scholar
  12. [12]
    V.A. Zazhigalov, S.V. Gerei and M. Rubanik, Kinet. Katal. 4 (1975) 967.Google Scholar
  13. [13]
    T. Chivers, J.B. Hyne and C. Lau, Int. J. Hydr. Energy 12 (1987) 235.Google Scholar
  14. [14]
    V. Kaloidas and N.G. Papayannakos, Ind. Eng. Chem. Res. 30 (1991) 345.Google Scholar
  15. [15]
    P.J. Magnus, E.K. Poels and J.A. Moulijn, Ind. Eng. Chem. Res. 32 (1993) 1818.Google Scholar
  16. [16]
    H. Topsøe, B. Clausen, N. Topsøe and E. Pedersen, Ind. Eng. Chem. Fundam. 25 (1986) 25.Google Scholar
  17. [17]
    M. Zdrazil, Catal. Today 3 (1988) 269.Google Scholar
  18. [18]
    B. Delmon, Catal. Lett. 22 (1993) 1.Google Scholar
  19. [19]
    K.S. Rao, V. Prasad, K. Chary and P.K. Rao, Stud. Surf. Sci. Catal. 44 (1991) 661.Google Scholar
  20. [20]
    V. Meeyoo, A.A. Adesina and G. Foulds, React. Kinet. Catal. Lett, (1995), in press.Google Scholar
  21. [21]
    R.R. Chianelli, T.A. Pecorado, T.R. Haibert, W.-H. Pan and E.I. Steifel, J. Catal. 86 (1984) 226.Google Scholar
  22. [22]
    V. Meeyoo, A.A. Adesina and G. Foulds,Proc. 44th Can. Chem. Eng. Conf., Calgary, 2–6 October 1994, p. 641.Google Scholar
  23. [23]
    Y. Okamoto, K. Nagata, T. Imanaka and T. Takyu, Bull. Chem. Soc. Jpn. 65 (1992) 1331.Google Scholar
  24. [24]
    M. Sugioka and K. Aomura, Int. J. Hydr. Energy 9 (1984) 891.Google Scholar
  25. [25]
    K.I. Tanaka and T. Okuhara, Catal. Rev. Sci. Eng. 15 (1977) 249.Google Scholar
  26. [26]
    R.R. Chianelli and T.A. Pecorado, J. Catal. 67 (1981) 430.Google Scholar
  27. [27]
    R.R. Chianelli and S. Harris, J. Catal. 86 (1984) 400.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • S. C. Moffat
    • 1
  • A. A. Adesina
    • 1
  1. 1.School of Chemical Engineering and Industrial ChemistryUniversity of New South WalesSydneyAustralia

Personalised recommendations