Monatshefte für Chemie / Chemical Monthly

, Volume 128, Issue 11, pp 1109–1118 | Cite as

Photodecomposition of phenol in a flow reactor: Adsorption and kinetics

  • A. Sobczyński
  • J. Gimenez
  • S. Cervera-March
Anorganische Und Physikalische Chemie

Summary

In this study, a new air lift loop photoreactor was used for both continuous and non-continuous water photodetoxification. Also, the kinetics of phenol photodegradation were measured under flow conditions. Both the kinetics of phenol adsorption on TiO2/SiO2 and of the total photo-mineralization of phenol were measured in order to gain more knowledge on the photocatalytic oxidation of phenol on illuminated titania.

Adsorption of phenol on TiO2/SiO2 proceeds even from diluted solutions. However, based on our data, it is impossible to state precisely the influence of the adsorption on the overall rate of phenol photodecomposition. The photoreaction yields stable intermediates which subsequently undergo total mineralization to CO2 and H2O. It is postulated that the intermediates consist mainly of polymeric compounds, difficult to determine by conventional analytical methods like GC, HPLC, or UV/Vis spectroscopy.

Keywords

Phenol photodegradation Kinetics Flow reactor 

Photolyse von Phenol in einem Durchflußreaktor: Adsorption und Kinetik

Zusammenfassung

Ein neuartiger Photoreaktor wurde auf seine Verwendbarkeit zur kontinuierlichen und nichtkontinuierlichen Wasseraufbereitung getestet. Die Kinetik des photolytischen Abbaus von Phenol wurde unter Durchflußbedingungen untersucht. Zum besseren Verständnis der photokatalysierten Oxidation von Phenol auf belichtetem Titanoxid wurde außerdem die Kinetik sowohl der Adsorption von Phenol an TiO2/SiO2 als auch seiner Gesamtphotomineralisierung erforscht.

Adsorption von Phenol an TiO2/SiO2 erfolgt bereits aus verdünnten Lösungen. Nach unseren Ergebnissen ist es allerdings unmöglich, den Einfluß der Adsorption auf die Photolyse genau zu bestimmen. Die Photoreaktion ergibt stabile Zwischenprodukte, die sich im weiteren Verlauf zu CO2 und H2O umsetzen. Es wird postuliert, daß es sich bei den Zwischenprodukten hauptsächlich um Polymere handelt, die mit konventionellen analytischen Techniken wie GC, HPLC oder UV/Vis-Spektroskopie schwer nachzuweisen sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Matthews RW (1992) Pure Appl Chem64: 1285Google Scholar
  2. [2]
    Fox MA, Dulay MT (1993) Chem Rev93: 341Google Scholar
  3. [3]
    Wold A (1993) Chem Mater5: 280Google Scholar
  4. [4]
    Pelizzetti E, Minero C (1993) Electrochim Acta38: 47Google Scholar
  5. [5]
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev93: 671Google Scholar
  6. [6]
    Oppenlaender T, Baun G, Egle W (1994) EPA Newsl52: 33Google Scholar
  7. [7]
    Sobczynska A, Sobczynski A (1994) Pol J Appl Chem38: 25Google Scholar
  8. [8]
    Jacob L, Oliveros E, Legrini O, Braun AM (1993) TiO2 Photocatalytic Treatment of Water. In: Ollis DF, Al-Ekabi H (eds) Photocatalytic Purification and Treatment of Water. Elsevier, Amsterdam, p 511Google Scholar
  9. [9]
    Gimenez J, Aguado MA, Cervera S, Borell L, Curco D, Queral MA (1994) Photoreactor Design for Photocatalytic Detoxification. In: Klett DE, Hogan RE, Tanaka T (eds) Solar Engineering. The American Society of Mechanical Engineers, New York, p 139Google Scholar
  10. [10]
    Blanco J, Malato S (1994) Solar Photocatalytic Mineralization of Rest-Hazardous Waste Water at Preindustrial Level. In: Klett DE, Hogan RE, Tanaka T (eds) Solar Engineering. The American Society of Mechanical Engineers, New York, p 103Google Scholar
  11. [11]
    Trillas M, Pujol M, Domenech X (1992) J Chem Technol Biotechnol55: 85Google Scholar
  12. [12]
    Abdullah M, Low GKC, Matthew RW (1990) J Phys Chem94: 6820Google Scholar
  13. [13]
    Takeda N, Torimoto T, Kuwabota S, Yonegama H (1995) J Phys Chem99: 9989Google Scholar
  14. [14]
    Diller R, Brandt M, Fornefett I, Siebers U, Bahnemann D (1995) Chemosphere30: 2333Google Scholar
  15. [15]
    Hidaka H, Zhao J, Pelizzetti E, Serpone N (1992) J Phys Chem96: 2226Google Scholar
  16. [16]
    Muszkat L, Bir L, Feigelson L (1995) J Photochem Photobiol A87: 85Google Scholar
  17. [17]
    Mao Y, Schoeneich C, Asmus KD (1991) J Phys Chem95: 10080Google Scholar
  18. [18]
    Sitkiewitz S, Heller A (1996) New J Chem20: 233Google Scholar
  19. [19]
    Monaci A, Ginstra A (1996) J Photochem Photobiol A93: 199Google Scholar
  20. [20]
    Tahiri H, Serpone N, Mao RL (1996) J Photochem Photobiol A93: 199Google Scholar
  21. [21]
    Terzian R, Serpone N, Hidaka H (1995) Catal Lett32: 227Google Scholar
  22. [22]
    Ku Y, Hsieh CB (1992) Ind Eng Chem Res31: 1823Google Scholar
  23. [23]
    Zang L, Liu CY, Ren XM (1995) J Chem Soc Faraday Trans91: 917Google Scholar
  24. [24]
    Minero C, Pelizzetti E, Pichat P, Sega M, Vincenti M (1995) Environ Sci Technol29: 2226Google Scholar
  25. [25]
    Prousek J, Slasarikova M (1996) Chem Listy90: 829Google Scholar
  26. [26]
    Mills A, Morris S, Davies R (1993) J Photochem Photobiol A70: 183Google Scholar
  27. [27]
    Turchi CS, Ollis DF (1990) J Catal122: 202Google Scholar
  28. [28]
    Cunningham J, Sedlak P (1993) Initial Rates of TiO2 Photocatalysed Degradation of Water Pollutants: Influences of Adsorption, pH and Foton Flux. In: Ollis DF, Al-Ekabi H (eds) Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam, p 67Google Scholar
  29. [29]
    Matthew RW (1988) J Catal113: 549Google Scholar
  30. [30]
    Lawless D, Serpone N, Meisel D (1991) J Phys Chem95: 5166Google Scholar
  31. [31]
    Goldstein S, Czapski G, Rabani J (1994) J Phys Chem98: 6586Google Scholar
  32. [32]
    Stafford U, Gray KA, Kamat PV (1994) J Phys Chem98: 6343Google Scholar
  33. [33]
    Sobczyński A, Gimenez J, Cervera-March S (1996) Pol J Appl Chem40: 103Google Scholar
  34. [34]
    Fan LS, Hwang SJ, Matsuura A (1984) Chem Eng Sci39: 1677Google Scholar
  35. [35]
    Perrys Chemical Engineer's Handbook, 6th edn (1984) Mc Graw-Hill, chapter 16, p 12Google Scholar
  36. [36]
    Matthew RW (1984) J Chem Soc Faraday Trans80: 457Google Scholar
  37. [37]
    Fox MA (1993) The Role of Hydroxyl Radicals in the Photocatalysed Detoxification of Organic Pollutants: Pulse Radiolysis and Time-Resolved Diffuse Reflectance Measurements. In: Ollis DF, Al-Ekabi H (eds) Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam, p 163Google Scholar
  38. [38]
    Drapper RB, Fox MA (1990) Langmuir6: 1990Google Scholar
  39. [39]
    Rodd's Chemistry of Carbon Compounds, 2nd edn (1971) Elsevier, Amsterdam, vol III, part A, p 298Google Scholar
  40. [40]
    Escudero JC, Simarro R, Cervera-March S, Gimenez J (1989) Chem Eng Sci44: 583Google Scholar
  41. [41]
    Sterbacek Z, Tausk P (1965) Mixing in the Chemical Industry. Pergamon Press, Oxford LondonGoogle Scholar
  42. [42]
    Elvers B, Hawkins S, Schulz G (eds) VCH, (1992) Ullman's Encyclopedia of Industrial Chemistry 5th edn. Weinheim, vol B4Google Scholar
  43. [43]
    Eccles RM, De Vaux GR (1981) Chem Eng Prog77(5): 80Google Scholar
  44. [44]
    Steiner R (1987) Chem Eng Process21: 1Google Scholar
  45. [45]
    Murov SL (ed) (1973) Handbook of Photochemistry. Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • A. Sobczyński
    • 1
  • J. Gimenez
    • 2
  • S. Cervera-March
    • 2
  1. 1.Faculty of Commodity SciencePoznań University of EconomicsPoznańPoland
  2. 2.Department of Chemical Engineering, Faculty of ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations