Advertisement

Bulletin géodésique

, 66:325 | Cite as

Statistical behaviour of the free-air, Bouguer and isostatic anomalies in Austria

  • Hussein Abd-Elmotaal
Article

Abstract

Some selected test areas in the Austrian territory are presented. Free-air and Bouguer anomalies as well as isostatic anomalies (based on Vening Meinesz' isostatic model) are computed. Statistics of these anomalies are given. Also, an extensive comparison between their empirical covariance functions is made and will be discussed. The results show that the isostatic anomalies for our test areas still contain, in general, a trend part.

Keywords

Covariance Function Gravity Anomaly Test Area Bouguer Anomaly Essential Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Forsberg R (1984a) Local Covariance Functions and Density Distributions. Report No. 356, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  2. Forsberg R (1984b) A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Report No. 355, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  3. Forsberg R (1986) Spectral Properties of the Gravity Field in the Nordic Countries. Boll. Geodesia e Sc. Aff. 95: 361–384Google Scholar
  4. Goad CC, Tscherning CC, Chin MM (1984) Gravity Empirical Covariance Values for the Continental United States. Journal of Geophysical Research 89(B9): 7962–7968CrossRefGoogle Scholar
  5. Kraiger G (1988) Influence of the Curvature Parameter on Least-Squares Prediction. Manuscripta geodaetica 13(3): 164–171Google Scholar
  6. Kraiger G, Kühtreiber N (1989) Freiluftanomalien, Bougueranomalien und isostatische Anomalien im Bereich der Ostalpen und ihr statistisches Verhalten In Österreichische Beiträge zu Meteorologie und Geophysik, Hefte 2, pp 73–94. Tagungsbericht über das 5. Internationale Alpengravimetrie Kolloquium, GrazGoogle Scholar
  7. Kühtreiber N, Kraiger G, Meurers B (1989) Pilotstudien für eine neue Bouguer-karte von Österreich In Österreichische Beiträge zu Meteorologie und Geophysik, Hefte 2, pp 51–72. Tagungsbericht über das 5. Internationale Alpengravimetrie Kolloquium, GrazGoogle Scholar
  8. Moritz H (1976) Covariance Functions in Least-Squares Collocation. Report No. 240, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  9. Moritz H (1980) Advanced Physical Geodesy. Herbert Wichmann, Karlsruhe (2nd edn, 1989)Google Scholar
  10. Moritz H (1984) Geodetic Reference System 1980. Bulletin Géodésique 58(3): 388–398 (also Bulletin Géodésique (1980) 54(3): 395–405)CrossRefGoogle Scholar
  11. Schwarz KP, Lachapelle G (1980) Local Characteristics of the Gravity Anomaly Covariance Function. Bulletin Géodésique 54: 21–36CrossRefGoogle Scholar
  12. Tscherning CC, Rapp R (1974) Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. Report No. 208, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  13. Vening MeineszFA (1931) Une Nouvelle Méthode pour la Réduction Isostatique Régionale de L'intensité de la Pesanteur. Bulletin Géodésique 29: 33–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Hussein Abd-Elmotaal
    • 1
  1. 1.Faculty of Engineering, Civil Engineering DepartmentMinia UniversityMiniaEgypt

Personalised recommendations