Skip to main content
Log in

Complex formation between gadolinium(III) porphyrins and some nucleic bases or their nucleoside derivatives in aqueous solutions

Komplexbildung zwischen Gadolinium(III)porphyrinen und einigen Nucleinbasen oder ihren Nucleosidderivaten in wäßrigen Lösungen

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

The mutual interactions of Gd(III)tetraphenylporphyrin (GdTPP), Gd(III)tetramethylpyridylporphyrin (GdTMePyP), and the free base tetramethylpyridylporphyrin (H2 TMePyP) with some nucleic bases (adenine, thymine, uracil, and cytosine) and their N-glycoside derivatives (adenosine, thymidine, uridine, and cytidine) have been studied by spectrophotometric titration in mixed methanol-ammonia-water solutions. It has been found that tetramethylpyridylporphyrin and its gadolinium complex form 1:1 complexes with nucleic bases and their nucleoside derivatives. The equilibrium constants were estimated using curve fitting procedures. The interactions are stronger for nucleoside derivatives than for nucleic bases. They are also stronger for metallated than for non-metallated porphyrins.

Zusammenfassung

Die Wechselwirkungen von Gd(III)tetraphenylporphyrin (GdTPP), Gd(III)-tetramethylpyridylprophyrin (GdMePyP) und der freien Base Tetramethylpyridylporphyrin (H2 TMePyP) mit einigen Nucleinbasen (Adenin, Thymin, Uracil, Cytosin) und ihren N-glycosidierten Derivaten (Adenosin, Thymidin, Uridin, Cytidin) wurden in Methanol-Ammoniak-Wasser — Mischungen mittels spektrophotometrischer Titration untersucht. Tetramethylpyridylporphyrin und sein Gadoliniumkpomplex bilden 1:1-Komplexe mit Nucleinbasen und ihren Nucleosidderivaten. Die Gleichgewichtskonstanten wurden übercurve-fitting - Algorithmen bestimmt. Die Wechselwirkungen sind für Nucleosidderivate stärker als für Nucleinbasen und für metallierte Porphyrine stärker als für nichtmetallierte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiel RJ, Howard JC, Mark EH, Datta-Gupta N (1979) Nucleic Acid Res6: 3093

    Google Scholar 

  2. Fiel RJ (1989) J Biomol Struct Dyn6: 1259

    Google Scholar 

  3. Pasternack RF, Sidney D, Hunt PA, Snowden EA, Gibbs EJ (1986) Nucleic Acid Res14: 3927

    Google Scholar 

  4. Marzilli LG, Petho G, Lin M, Kim MS, Dixon WD (1992) J Am Chem Soc114: 7575

    Google Scholar 

  5. Hudson BP, Sou J, Berger DJ, McMillin, DR (1992) J Am Chem Soc114: 8997

    Google Scholar 

  6. Mizutani T, Ema T, Yoshida T, Kuroda Y, Ogoshi H (1993) Inorg Chem32: 2072

    Google Scholar 

  7. Liu Y, Koningstein JA (1993) J Phys Chem97: 6155

    Google Scholar 

  8. Pasternack RF, Gibbs EJ, Gaudemer A, Antebi A, Bassner S, De Poy L, Turner DH, Williams A, Laplace F, Lansard MH, Merienne C, Perree-Fauvet M (1985) J Am Chem Soc107: 8179

    Google Scholar 

  9. Butje K, Schneidner JH, Kim J-JP, Wang Y, Ikuta S, Nakamoto K (1989) J Inorg Biochem37: 119

    Google Scholar 

  10. Slama-Schwok A, Lehn J-M (1990) Biochem29: 7895

    Google Scholar 

  11. Tabata M, Saki M, Yoshikoka K, Kodama H (1990) Anal Sci6: 651

    Google Scholar 

  12. Ogoshi H, Hatakeyama H, Kotani J, Kawashima A, Kuroda Y (1991) J Am Chem Soc113: 8181

    Google Scholar 

  13. Strahan G, Lu D, Tsuboi M, Nakamoto K (1992) J Phys Chem96: 6450

    Google Scholar 

  14. Mojzes P, Chinsky L, Turpin P-Y (1993) J Phys Chem97: 4841

    Google Scholar 

  15. Winkelman J, Slater G, Grossman J (1967) J Cancer Res27: 2060

    Google Scholar 

  16. Hambright P, Fawwaz R, Valk P, McRae J, Bearden AJ (1967) Bioinorg Chem5: 2060

    Google Scholar 

  17. Marzola P, Cannistraro S (1987) Physiol Chem Medical NMR19: 279

    Google Scholar 

  18. Bünzli J-CG, Choppin GR (1989) Lanthanide probes in life, chemical and earth science, theory and practise. Elsevier, Amsterdam

    Google Scholar 

  19. Wei C-C, Hsu W-S, Tominaga Y, Tsasi J-C, Chai C-Y (1993) Nucl Instruments and Meth in Phys ResB75: 195

    Google Scholar 

  20. Sessler JL, Hemmi G, Mody TD, Murai T, Burrell A, Young SW (1994) Acc Chem Res27: 43

    Google Scholar 

  21. White WJ (1978) In: Dolphin D (ed) The porphyrins, vol 5. Academic Press, New York, p 303

    Google Scholar 

  22. Brookfield RL, Ellul H, Harriman A (1985) J Photochem31: 97

    Google Scholar 

  23. Pasternack RF, Huber PR, Boyd P, Engasser G, Francesconi L, Gibbs E, Fasella P, Venturo GC, Hinds L deC (1972) J Am Chem Soc94: 4511

    Google Scholar 

  24. Hambright P, Fleischer EB (1970) Inorg Chem9: 1757

    Google Scholar 

  25. Horrocks W DeW, Hove EG (1978) J Am Chem Soc100: 4386

    Google Scholar 

  26. Wong Ch-P (1983) Inorg Synth22: 156

    Google Scholar 

  27. Haye S, Hambright P (1991) J Coord Chem22: 315

    Google Scholar 

  28. Radzki S, Krausz P (1995) Monatsh Chem126: 51

    Google Scholar 

  29. Radzki S, Krausz P, Giannotti C (1987) Inorg Chim Acta138: 139

    Google Scholar 

  30. Jiang J, Machida K, Yammamoto E, Adachi G (1991) Chem Lett: 2035

  31. Beck MT (1970) Chemistry of complex equilibria. Van Nostrand Reinhold Company, London, p 93

    Google Scholar 

  32. Inczédy J (1979) Równowagi kompleksowania w chemii analitycznej. PWN, Warszawa, p 21

    Google Scholar 

  33. Sigma Plot v. 5.01. Scientific Graphic Software. User's Manual (1992) Jandel Scientific Corporation, Corte Madera, CA

  34. Sugimoto H, Ueda N, Mori M (1981) Bull Chem Soc Jpn54: 3425

    Google Scholar 

  35. Radzki S, Giannotti C (1993) Inorg Chim Acta205: 213

    Google Scholar 

  36. Suzuki N, Saitoch K, Shibata Y (1990) J Chromatogr504: 179

    Google Scholar 

  37. Christenssen JJ, Izatt RMI (1966) J Phys Chem66: 1030

    Google Scholar 

  38. Izatt RMI, Rytting JH, Hansen LD, Christenssen JJ (1966) J Am Chem Soc88: 2641

    Google Scholar 

  39. Christenssen JJ, Rytting JH, Izatt RMI (1967) J Phys Chem71: 2700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzki, S., Krausz, P. Complex formation between gadolinium(III) porphyrins and some nucleic bases or their nucleoside derivatives in aqueous solutions. Monatsh Chem 127, 51–61 (1996). https://doi.org/10.1007/BF00807408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807408

Keywords

Navigation