Monatshefte für Chemie / Chemical Monthly

, Volume 127, Issue 2, pp 201–217 | Cite as

Aromatische Spirane, 21. Mitt: Darstellung von Methylphthalaldehydsäuren und ihren Ethylund Methylestern als Synthone für Synthesen von methylierten 2,2′-Spirobiindandionen

  • H. K. Neudeck
Organische Chemie Und Biochemie

Aromatic spiranes XXI: Syntheses of methyl substituted phthalaldehydic acids and their ethyl and methyl esters as synthones for syntheses of methylated 2,2′-spirobiindandiones


The isomeric methyl phthalaldehydic acids11 were obtained from phthalides4 by bromation (NBS) to the 3-bromo derivatives7 and subsequent hydrolysis with water.4 in turn were accessible from dimethyl methyl benzoates1 by dibromination withNBS and subsequent thermical cyclization to the bromo derivatives3 which, on catalytic dehalogenation, afforded the phthalides4. Reaction of11 with methanol or ethanol gave the pseudo-esters13 and14, resp. Short treatment of11 with diazomethane on the other hand yielded the methyl formyl benzoates15b to15e. Prolonged reaction (several hours) gave the oxiranyl compounds17; in addition, the acetonyl derivatives18 were also found, obviously formed by a double methylene insertion into15. All reactions proceeded with good to excellent yields.


Methyl phthalides Phthalaldehydic acids Formyl methylbenzoates and pseudoesters Oxiranes CH2-Insertion 1H NMR 13C NMR Mass spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    20. Mitt., Neudeck HK (1995) Monatsh Chem (submitted)Google Scholar
  2. [2]
    Neudeck HK (Mitt in Vorbereitung)Google Scholar
  3. [3]
    Newman MS, Leegwater AL (1968) J Am Chem Soc90: 4410Google Scholar
  4. [4]
    Meyer A, Neudeck H, Schlögl K (1977) Chem Ber110: 1403Google Scholar
  5. [5]
    Francis JE, Doebel KJ, Schutte PM, Savarese EC, Hopkins SE, Bachmann EF (1979) Can J Chem57: 3326Google Scholar
  6. [6]
    Nakazaki M, Hirose Y, Shimizu T, Suzuki T, Ishii A, Makimura M (1980) J Org Chem45: 1428Google Scholar
  7. [7]
    Bunnett JF, Hauser ChF (1965) J Am Chem Soc87: 2214Google Scholar
  8. [8]
    Bertrand MP, Oumar-Mahamat H, Surzur JM (1985) Tetrahedron Lett26: 1209Google Scholar
  9. [9]
    Maklouf MA, Rickborn B (1981) J Org Chem46: 4810Google Scholar
  10. [10]
    Mc Alees AJ, Mc Crindle R, Sneddon DW (1977) J Chem Soc Perkin Trans1: 2030Google Scholar
  11. [11]
    Mori M, Chiba K, Inotsume N, Ban Y (1979) Heterocycles12: 921Google Scholar
  12. [12]
    Cowell A, Stille JK (1980) J Am Chem Soc102: 4193Google Scholar
  13. [13]
    Foa M, Frangalane F, Bencini E, Gardano A (1985) J Organometallic Chem: 293Google Scholar
  14. [14]
    Uemara M, Tokuyama S, Sakan T (1975) Chem Lett: 1195Google Scholar
  15. [15]
    Meyer N, Seebach D (1978) Angew Chem90: 553Google Scholar
  16. [16]
    Larock RC, Fellows CA (1982) J Am Chem Soc104: 1900Google Scholar
  17. [17]
    Sibi MP, Miah MAJ, Snieckus V (1984) J Org Chem49: 737Google Scholar
  18. [18]
    Commins DL, Brown JS (1986) J Org Chem51: 3566Google Scholar
  19. [19]
    Mazzocchi PH, Jing NY, Oda K (1992) Heterocycles34: 1483Google Scholar
  20. [20]
    Padwa A, Bullock WH, Norman BH, Perumattam J (1991) J Org Chem56: 4252Google Scholar
  21. [21]
    Noguchi M, Kakimoto S, Kawakami H, Kajigaeshi S (1985) Heterocycles23: 1085Google Scholar
  22. [22]
    Perkin WH, Stone JFS (1925) J Chem Soc127: 2275Google Scholar
  23. [23]
    Vögtle F, Grütze J, Nätscher R, Wieder W, Weber E, Grün R (1975) Chem Ber108: 1694Google Scholar
  24. [24]
    Achenbach H, Mühlenfeld A (1985) Z Naturforsch406: 426Google Scholar
  25. [25]
    Weeks DP, Field FH (1986) J Org Chem51: 3566Google Scholar
  26. [26]
    C-13 NMR-Database, Sadtler Research Lab, Philadelphia, PAGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • H. K. Neudeck
    • 1
  1. 1.Institut für Organische Chemie der Universität WienWienÖsterreich

Personalised recommendations