Catalysis Letters

, Volume 36, Issue 1–2, pp 41–49 | Cite as

Effects of ethylene glycol addition on the properties of Ru/Al2O3 catalyst prepared by sol-gel method

  • J. C. Yang
  • Y. G. Shul


Ru/Al2O3 catalysts were prepared by sol-gel method with an organic additive (ethylene glycol). The effect of the addition of ethylene glycol on the properties of Ru/Al2O3 was characterized by BET, XRD, EXAFS, and TGA/DTA. Ethylene glycol was effective to promote the phase transition of α-Al2O3 even at 800°C calcination with high surface area. This finding is ascribed to the modified structure of aluminum alkoxide by ethylene glycol addition in the solution state. Ethylene glycol is also effective to get small particles of ruthenium after the reduction at 500°C. The EXAFS and UV-Vis spectra of Ru complex revealed that the coordination structure of Ru depended on the additive used. The ethylene glycol sol prefers to form octahedral Ru complex. This Ru complex in alumina matrix is stable up to 200°C and forms small Ru oxide particles even at 300°C calcination. This suggests that ethylene glycol coordinates to the Ru complex as well as to aluminum ion in the initial state, which is important to control the final properties of the Ru/Al2O3 catalyst.


sol-gel Ru/Al2O3 ethylene glycol characterization chelating agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.A. Vannice, J. Catal. 37 (1975) 449.Google Scholar
  2. [2]
    J.H. Sinfelt, in:Bimetallic Catalysts: Discoveries, Concepts, and Applications (Wiley, New York, 1983).Google Scholar
  3. [3]
    R.D. Gonzalez and H. Miura, J. Catal. 77 (1982) 338.Google Scholar
  4. [4]
    B. Delmon and P.A. Jacobs, in:Preparation of Catalysts I (Elsevier, Amsterdam, 1975).Google Scholar
  5. [5]
    C.J. Brinker and G.W. Scherer, in:Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
  6. [6]
    T. Lopez, A. Lopez-Gaona and R. Gomez, J. Non-Cryst. Solids 110 (1989) 170.Google Scholar
  7. [7]
    T. Lopez, R. Gomez, O. Novaro, A. Ramirez-Solis, E. Sanchez-Mora, S. Castillo, E. Poulain and J.M. Martinez-Magadan, J. Catal. 141(1993)114.Google Scholar
  8. [8]
    T. Lopez, P. Bosch, M. Asomoza, and R. Gomez, J. Catal. 133 (1992) 247.Google Scholar
  9. [9]
    T. Lopez, M. Asomoza, P. Bosch, E. Garcia-Gigueroa and R. Gomez, J. Catal. 138 (1992)463.Google Scholar
  10. [10]
    K. Balakrishnan and R.D. Gonzalez, J. Catal. 144 (1993) 395.Google Scholar
  11. [11]
    C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst. Solids 100 (1988) 65.Google Scholar
  12. [12]
    R. Nass and H. Schmidt, J. Non-Cryst. Solids 121 (1990) 329.Google Scholar
  13. [13]
    M. Inoue, H. Kominami and T. Inui, J. Chem. Soc. Dalton Trans. (1991) 3331.Google Scholar
  14. [14]
    M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc. 75 (1992) 2597.Google Scholar
  15. [15]
    K. Maeda, F. Mizukami, S. Niwa, M. Toba, M. Watanabe and K. Masuda, J. Chem. Soc. Faraday Trans. 88 (1992) 97.Google Scholar
  16. [16]
    K. Oh, J.C. Yang, K.T. Jung and Y.G. Shul, KJChe, to be published.Google Scholar
  17. [17]
    P.M. Nelson and F.T. Eggertsen, Anal. Chem. 30 (1958) 1387.Google Scholar
  18. [18]
    B.K. Teo, in:EXAFS: Basic Principles and Data Analysis (Springer, Berlin, 1986).Google Scholar
  19. [19]
    W.H. Critzen, ed., in:Alumina as a Ceramic Material (American Ceramic Society, Columbus, 1970)Google Scholar
  20. [20]
    M. Inoguchi, K. Tate, Y. Kaneko, Y. Satomi, K. Inaba, T. Mizutori, H. Kagaya, R. Nishiyama, S. Onishi and T. Nagai, Bull. Jpn. Petrol. Inst. 13 (1975) 289.Google Scholar
  21. [21]
    K. Tohji, Y. Udagawa, S. Tanabe and A. Ueno, J. Am. Chem. Soc. 106 (1984) 612.Google Scholar
  22. [22]
    K. Asakura and Y. Iwasawa, J. Chem. Soc. Faraday Trans. 86 (1990) 2657.Google Scholar
  23. [23]
    K. Asakura, K. Bando and Y. Iwasawa, J. Chem. Soc. Faraday Trans. 86 (1990) 2645.Google Scholar
  24. [24]
    C. Jorgensen, Acta Chem. Scand.10 (1956) 518.Google Scholar
  25. [25]
    Z. Harzion and G. Navon, Inorg. Chem. 19 (1980) 2237.Google Scholar
  26. [26]
    M. Vaarkamp, F. Modica, J. Miller and D. Koningsberger, J. Catal. 144(1993)611.Google Scholar
  27. [27]
    H. Sakane, T. Miyanaga, I. Watanabe and Y. Yokoyama, Chem. Lett. (1990) 1623.Google Scholar
  28. [28]
    P. Lond, P. Salmon and D. Champeney, J. Am. Chem. Soc. 113 (1991)6420.Google Scholar
  29. [29]
    K. Tohji, Y. Udagawa, S. Tanabe, T. Ida and A. Ueno, J. Am. Chem. Soc. 106(1984)5172.Google Scholar
  30. [30]
    K. Tadanaga, T. Iwami, N. Tohge and T. Minami, J. Sol-Gel Sci. Technol. 3 (1994) 5.Google Scholar
  31. [31]
    H. Schaper, E.B.M. Doesburg, P.H.M. de Korte and L. Reijen, Solid State Ionics 16 (1985) 261.Google Scholar
  32. [32]
    R. Shelleman, G. Messing and M. Kumagai, J. Non-Cryst. Solids 82 (1986) 277.Google Scholar
  33. [33]
    K. Maeda, F. Mizukami, M. Watanabe, N. Arai, S. Niwa, M. Toba and K. Shimizu, J. Mater. Sci. Lett. 9 (1990) 522.Google Scholar
  34. [34]
    F. Mizukami, K. Maeda, M. Watanabe, K. Masuda, T. Sano and K. Kuno, in:Catalysis and Automotive Pollution Control II, ed. A. Crucq. (Elsevier, Amsterdam, 1990).Google Scholar
  35. [35]
    A.F. Wells, in:Structural Inorganic Chemistry, 5th Ed. (Clarendon Press, Oxford, 1984).Google Scholar
  36. [36]
    F. Lytle, G. Via and H. Sinfelt, J. Chem. Phys. 67 (1977) 3831.Google Scholar
  37. [37]
    C. Macgillavry, in:International Tables for X-ray Crystallography, Vol. III, eds. C. Macgillavry, G. Rieck and K. Lonsdale (Reidel, Dordrecht, 1983).Google Scholar
  38. [38]
    M. Miyake, N. Nakagawa, H. Ohyanagi and T. Suzuki, Inorg. Chem. 25 (1986) 700.Google Scholar
  39. [39]
    S.J. Cho, S.M. Jung, Y.G. Shul and R. Ryoo, J. Phys. Chem. 96 (1992) 9922.Google Scholar
  40. [40]
    L. Bonhomme-Coury, F. Babonneau and J. Livage, J. Sol-Gel Sci. Technol. 3 (1994) 157.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • J. C. Yang
    • 1
  • Y. G. Shul
    • 1
  1. 1.Department of Chemical EngineeringYonsei UniversitySeoulKorea

Personalised recommendations