Ultrasonic and viscosimetric studies of samarium laurate in benzene-dimethylsulfoxide mixtures

  • K. N. Mehrotra
  • M. Anis
Anorganische Und Physikalische Chemie

Summary

Ultrasonic and viscosity measurements of samarium laurate in benzene-DMSO mixtures of different compositions (7:3 and 1:1 V/V) have been used to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic parameters of the system. The values of critical micelle concentration increase with increasing amount ofDMSO in the solvent mixtures. The viscosity results have been explained on the basis of equations proposed byEinstein,Vand. Moulik, andJones-Dole. The values of CMC for samarium laurate obtained from the viscosity measurements are in agreement with the results obtained from ultrasonic measurements. The results show that the soap molecules do not aggregate appreciably below CMC; there is a marked change in the aggregation behaviour at CMC.

Keywords

Samarium laurate Micellization Ultrasonic velocity Acoustic parameters Viscosity 

Ultraschall- und Viskositätsmessungen an Samariumlaurat in Benzol-DMSO-Mischungen

Zusammenfassung

Mit Hilfe von Ultraschall- und Viskositätsmessungen an Samariumlaurat in Benzol-DMSO — Mischungen verschiedener Zusammensetzung (7:3 und 1:1 v/v) wurden die kritische Micellenkonzentration (CMC), Seife-Lösungsmittel-Wechselwirkungen und verschiedene akustische Parameter des Systems bestimmt. Die Werte für die kritische Micellenkonzentration steigen mit wachsendem Anteil vonDMSO im Lösungsmittelgemisch. Die Érgebnisse der Viskositätsmessungen werden auf der Basis der Gleichungen vonEinstein,Vand,Moulik undJones-Dole erklärt. Die CMC-Werte für Samariumlaurat aus Viskositäts- und Ultraschallmessungen stimmen überein. Die Ergebnisse zeigen, daß die Seifenmoleküle bei Konzentrationen unter CMC nicht stark aggregieren; bei Erreichen des CMC-Werts tritt eine ausgeprägte Änderung im Aggregationsverhalten ein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chatfield H. W. (1936) Paint. Manuf.6: 112Google Scholar
  2. [2]
    Elliott S. B. (1946) The alkaline earth and heavy metal soaps. Reinhold, New YorkGoogle Scholar
  3. [3]
    McBain J. W. (1950) Colloid science, Reinhold, New YorkGoogle Scholar
  4. [4]
    Warner G. H. (1978) Krik-Ofhmer Encycl. Chem. Tech. 3rd edn.2: 202; Chem. Abstr.89: 45715rGoogle Scholar
  5. [5]
    Markley K. S. (1962) Salts of fatty acids, part 2, 2nd edn. Inter-Science, New York, pp 739–745Google Scholar
  6. [6]
    Synthetic organic chemicals, United States Production and Sales (1974) United States International Trade Commission, U.S. Government Printing Office, Washington, D.C. (1976)Google Scholar
  7. [7]
    Poller R. C. (1976) Proceedings Second International Symposium on PVC, Lyon, JulyGoogle Scholar
  8. [8]
    Yong W. A. (1942) Rev., Current Lit. Paint, Colour, Varnish and Applied Ind.15: 34Google Scholar
  9. [9]
    Davidson J., Better E. J., Davidson A. (1953) Soap manufacture, vol I. Interscience, New York, p 1Google Scholar
  10. [10]
    Skellon J. H., Andrews K. E. (1955) J. Appl. Chem. (London)5: 245Google Scholar
  11. [11]
    Mains F., Mills D., White D. W. (1967) U.S. 3, 320,172: May 16Google Scholar
  12. [12]
    Jacobson B. (1952) Acta. Chem. Scand.6: 1485Google Scholar
  13. [13]
    E'lpiner I. E. (1964) Ultrasound: physical, chemical and biological effects. Consultant Bureau, Moscow, p 371Google Scholar
  14. [14]
    Sindhu S. (1987) Ultrasonic velocity studies in liquids and their co-relation with the structural aspects. Gian Publishing House, DelhiGoogle Scholar
  15. [15]
    Pasynskii A. (1938) Acta Physico Chim. (URSS)8: 357; J. Phys. Chem. (USSR)11: 451Google Scholar
  16. [16]
    Kertes A. S., Gutmann H. (1975) Surface and colloid science, vol 8. (ed Matijevie E.) Wiley, New YorkGoogle Scholar
  17. [17]
    Lo, F. Y.-F., Escortt B. M., Fendler E. J., Adams, E. T., Larsen R. D., Smith P. W. (1975) J. Phys. Chem.79: 2609Google Scholar
  18. [18]
    Goldman S., Care G. C. B. (1971) Can. J. Chem.49: 1716, 1726, 4096Google Scholar
  19. [19]
    Sheih P. S., Fendler J. H. (1977) J. Chem. Soc. Farad.I 73: 1480Google Scholar
  20. [20]
    Garnsey R., Boe R. J., Mahoney R., Litovitz T. A. (1969) J. Chem. Phys.50: 5222Google Scholar
  21. [21]
    Prakash S., Ichhaporia F. M., Pandey J. D. (1964) J. Phys. Chem.58: 3078Google Scholar
  22. [22]
    Bachem C. (1936) Z. Physik101: 541Google Scholar
  23. [23]
    Fogg P. G. I. (1958) J. Chem. Soc. 4111Google Scholar
  24. [24]
    Nakamura S. (1967) J. Am. Chem. Soc.89: 1765Google Scholar
  25. [25]
    Prakash S., Prakash O. (1975) Acoustica32: 279Google Scholar
  26. [26]
    Prakash S., Prasad N., Prakash O. (1977) J. Chem. Engg. Data22: 51Google Scholar
  27. [27]
    Allam D. S., Lee W. (1964) J. Chem. Soc. 6049Google Scholar
  28. [28]
    Mehrotra K. N., Tandon Kirti (1990) Monatsh. Chemie121: 577–584Google Scholar
  29. [29]
    Einstein A. (1906) Ann. Physik19: 289Google Scholar
  30. [30]
    Vand V. (1948) J. Phys. Colloid. Chem.52: 277Google Scholar
  31. [31]
    Moulik S. P. (1968) J. Phys. Chem.72: 4682Google Scholar
  32. [32]
    Jones G., Dole M. (1929) J. Am. Chem. Soc.51: 2950Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. N. Mehrotra
    • 1
  • M. Anis
    • 1
  1. 1.Department of ChemistryAgra UniversityAgraIndia

Personalised recommendations