Catalysis Letters

, Volume 35, Issue 1–2, pp 107–118 | Cite as

Thermal stability of the Pt bearing sulfate-promoted zirconia in the presence of hydrogen

  • Raymond Le Van Mao
  • Shuyong Xiao
  • Tuan Si Le


Molecular hydrogen reduces the sulfate groups of the sulfate-promoted zirconia into volatile species, at a temperature much lower than the temperature of decomposition-oxidation of these groups in inert atmosphere or in air. This reduction effect is enhanced with the incorporation of Pt into the sulfate-promoted zirconia (the so-called “Pt-to-sulfate” effect), resulting in the loss of the sulfate groups at a significantly lower temperature. Such an enhanced reduction activity of hydrogen can be explained by the well known activation action of Pt on molecular hydrogen at relatively high temperatures. Moreover, this also results in the production of some surface zirconium sulfide.


sulfate-promoted zirconia thermal stability effect of hydrogen activation by Pt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Hino and K. Arata, J. Chem. Soc. Chem. Commun. (1980) 851.Google Scholar
  2. [2]
    K. Ebitani, J. Tsuji, H. Hattori and H. Kita, J. Catal. 135 (1992) 609.Google Scholar
  3. [3]
    J.M. Parera, Catal. Today 15 (1992) 481.Google Scholar
  4. [4]
    F.R. Chen, G. Coudurier, J.F. Joly and J.C. Vedrine, J. Catal. 143 (1993) 616.Google Scholar
  5. [5]
    A. Corma, M.I. Juan-Rajadell, J.M. López-Nieto, A. Martínez and C. Martínez, Appl. Catal. A 111 (1994) 175.Google Scholar
  6. [6]
    V. Adeeva, J.W. de Haan, J. Janchen, G.D. Lei, V. Schunemann, L.J.M. van de Ven, W.M.H. Sachtler and R.A. van Santen, J. Catal. 151 (1995) 364.Google Scholar
  7. [7]
    A. Sayari and A. Dicko, J. Catal. 145 (1994) 561.Google Scholar
  8. [8]
    A. Dicko, X. Song, A. Adnot and A. Sayari, J. Catal. 150 (1994) 254.Google Scholar
  9. [9]
    M.Y. Wen, I. Wender and J.W. Tierney, Energy Fuels 4 (1990) 372.Google Scholar
  10. [10]
    E. Iglesia, S.L. Soled and G.M. Kramer, J. Catal. 144 (1993) 238.Google Scholar
  11. [11]
    S. Xiao and R. Le Van Mao, J. Microporous Mater., in press.Google Scholar
  12. [12]
    K. Tanabe, Appl. Catal. A 113 (1994) 147.Google Scholar
  13. [13]
    E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.Google Scholar
  14. [14]
    R. Le Van Mao, P. Levesque and B. Sjiariel, Can. J. Chem. Eng. 64 (1986) 514.Google Scholar
  15. [15]
    R. Le Van Mao, US Patent 4,692,424 (1987).Google Scholar
  16. [16]
    J. Yao, R. Le Van Mao and L. Dufresne, Appl. Catal. 65 (1990) 175.Google Scholar
  17. [17]
    S. Xiao, R. Le Van Mao and G. Denes, J. Mater. Chem., in press.Google Scholar
  18. [18]
    R. Le Van Mao and L. Dufresne, Appl. Catal. 52 (1989) 1.Google Scholar
  19. [19]
    S. Xiao, PhD Thesis, Concordia University (1995).Google Scholar
  20. [20]
    E.E. Platero and M.P. Mentruit, Catal. Lett. 30 (1995) 31.Google Scholar
  21. [21]
    J. Scherzer, in:Octane-Enhancing Zeolitic FCC Catalysts, Chem. Ind. 42 (Dekker, New York, 1990) p. 172.Google Scholar
  22. [22]
    R.A. Keogh, R. Srinivasan and B.H. Davis, J. Catal. 151 (1995)292.Google Scholar
  23. [23]
    K. Ebitani, J. Konishi, A. Horie, H. Hattori and K. Tanabe, in:Acid-Base Catalysis, eds. K. Tanabe, H. Hattori, T. Yamaguchi and T. Tanaka (Kodansha/VCH, Tokyo/New York, 1989) p. 491 and references therein.Google Scholar
  24. [24]
    J.A. Martens and P.A. Jacobs, in:Theoretical Aspects of Heterogeneous Catalysis, ed. J.B. Moffat (Van Nostrand Reinhold, New York, 1990) p. 52.Google Scholar
  25. [25]
    R. Le Van Mao, Concordia University, July 1995, unpublished.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Raymond Le Van Mao
    • 1
  • Shuyong Xiao
    • 1
  • Tuan Si Le
    • 1
  1. 1.Catalysis Laboratory and Laboratories for Inorganic Materials, Department of Chemistry and BiochemistryConcordia UniversityMontrealCanada

Personalised recommendations