Advertisement

Catalysis Letters

, Volume 35, Issue 1–2, pp 57–64 | Cite as

Oxidative dehydrogenation of propane over magnesium molybdate catalysts

  • Young Seek Yoon
  • Wataru Ueda
  • Yoshihiko Moro-oka
Article

Abstract

Catalytic activities of magnesium molybdates were investigated for the oxidative dehydrogenation of propane with and without molecular oxygen under atmospheric pressure. Catalytic properties drastically changed with the catalyst composition, and it turned out that Mg0.95MoOx catalysts having slight excess molybdenum showed the highest activity in the oxidative dehydrogenation of propane, which gave 61% selectivity to propene at 22% conversion of propane at 515°C. The catalytic activities strongly depended on the acidic properties of the catalysts. It was also revealed that the lattice oxide ions of the catalysts participated as an active oxygen in the oxidative dehydrogenation of propane.

Keywords

magnesium molybdates oxidative dehydrogenation of propane acidic properties lattice oxide ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Moro-oka and W. Ueda, in:Catalysis, Vol. 11 (Royal Society of Chemistry, 1994) p. 223.Google Scholar
  2. [2]
    H.H. Kung, in: Adv. Catal. 40 (1994) 1.Google Scholar
  3. [3]
    M. A. Chaar, D. Patel and H.H. Kung, J. Catal. 109 (1988) 463.Google Scholar
  4. [4]
    R.H.H. Smits, K. Seshan and J.R.H. Ross, in:Catalytic Selective Oxidation, ACS Symp. Series, Vol. 523, eds. S.T. Oyama and J.W. Hightower (Am. Chem. Soc., Washington, 1993) p. 380.Google Scholar
  5. [5]
    P. Conceptión, J.M. López Nieto and J. Pérez-Pariente, Catal. Lett. 19 (1993) 333.Google Scholar
  6. [6]
    N. Fujikawa, Y.S. Yoon, W. Ueda and Y. Moro-oka, in:Advanced Materials '93, II/A, Trans. Mater. Res. Soc. Jpn., Vol. 15A, eds. H. Aoki et al. (Elsevier, Amsterdam, 1994)p. 79.Google Scholar
  7. [7]
    C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J.M. Herrmann and G. Thomas, Catal. Lett. 10 (1991) 181.Google Scholar
  8. [8]
    R.H.H. Smits, K. Seshan and J.R.H. Ross, J. Chem. Soc. Chem. Commun. 8 (1991) 558.Google Scholar
  9. [9]
    B. Grzybowska, J. Haber and J. Janas, J. Catal. 49 (1977) 150.Google Scholar
  10. [10]
    P.P. Cord, P. Courtine, G. Pannetier and J. Guillermett, Spectrochim. Acta A 28 (1972) 1601.Google Scholar
  11. [11]
    J. Meullemeestre and E. Penigault, Bull. Soc. Chim. France 9/10 (1975) 1925.Google Scholar
  12. [12]
    S.C. Abrahams, J. Chem. Phys. 46 (1967) 2052.Google Scholar
  13. [13]
    V.A. Doroshenko, L.P. Shapovalova and D.N. Tmenov. J. Appl. Chem. USSR 55 (1982) 71.Google Scholar
  14. [14]
    G.A. Stepanov, A.L. Tsailingol'd, V.A. Levin and F.S. Pilipenko, in:Studies in Surface Science and Catalysis, Vol. 7 (Elsevier, Amsterdam, 1981)p. 1293.Google Scholar
  15. [15]
    W. Oganowski, J. Hanuza, B. Jezowska-Trzebiatowska and J. Wrzyszcz, J. Catal. 39 (1975) 161.Google Scholar
  16. [16]
    S. Hasegawa, T. Tanaka, M. Kudo, H. Mamada, H. Hattori and S. Yoshida, Catal. Lett. 12 (1992)255.Google Scholar
  17. [17]
    J. Le Bars, J.C. Vedrine, A. Aurou, S. Trautmann and M. Baerns, Appl. Catal. A 88 (1992) 179.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Young Seek Yoon
    • 1
  • Wataru Ueda
    • 2
  • Yoshihiko Moro-oka
    • 1
  1. 1.Research Laboratory of Resources UtilizationTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Environmental Chemistry and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations