Advertisement

Catalysis Letters

, Volume 27, Issue 1–2, pp 207–220 | Cite as

Microkinetic analysis of the oxidative conversion of methane. Dependence of rate constants on the electrical properties of (CaO) x (CeO2)1−x catalysts

  • Dorit Wolf
Article

Abstract

Elementary reaction steps of the oxidative conversion of methane to CO x and ethane were derived from kinetic data for various (CaO) x (CeO2)1−x catalysts. The rate constants depend on electron and O2− conductivity as well as on the reducibility of the oxides. It is shown hereby that reactions resulting in increased or in decreased ethane selectivity are interrelated via the same catalyst properties.

Keywords

methane oxidation microkinetics CaO-CeO2 catalysts electron conductivity oxygen-anion conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O.V. Krylov, Catal. Today 18 (3) (1993).Google Scholar
  2. [2]
    E.E. Wolf, ed.,Methane Conversion by Oxidative Processes, Van Nostrand Reinhold Catalysis Series (Van Nostrand Reinhold, New York, 1992).Google Scholar
  3. [3]
    J.A. Dumesic, D.F. Rudd, L.M. Aparicio, I.E. Rekoske and A.A. Trevino, in:The Microkinetics of Heterogeneous Catalysis, ACS Professional Reference Book (Am. Chem. Soc., Washington, 1993).Google Scholar
  4. [4]
    V.H. Möbius, Z. Chem. 4 (1964) 81.Google Scholar
  5. [5]
    R.M. Blumenthal, F.S. Bruguer and J.E. Garnier, J. Electrochem. Soc. 120 (1973) 1230.Google Scholar
  6. [6]
    D. Wolf, B. Ferrand and G. Gayko, unpublished.Google Scholar
  7. [7]
    M. Kemna, Diploma Thesis, Bochum, Germany (1992).Google Scholar
  8. [8]
    D.-J. Driscoll and J.H. Lunsford, J. Phys. Chem. 89 (1985) 4415.Google Scholar
  9. [9]
    Y. Feng, J. Niirama and D. Gutman, J. Phys. Chem. 95 (1991) 6558, 6564.Google Scholar
  10. [10]
    O.V. Buyevskaya, M. Rothaemel, H.W. Zanthoff and M. Baerns, J. Catal. 146 (1994) 346.Google Scholar
  11. [11]
    Y. Tong and J.H. Lunsford, J. Am. Chem. Soc. 113 (1991) 4741.Google Scholar
  12. [12]
    D.J. Driscoll, W. Martir, X.J. Wang and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 58.Google Scholar
  13. [13]
    J. Warnatz, in:Combustion Chemistry, ed. W.C. Gamier (Springer, Berlin, 1984).Google Scholar
  14. [14]
    R.A. Cox, in:Modern Gas Kinetics—Theory, Experiment and Application, eds. M.J. Pilling and I.W. Smith (Blackwell, Sci. Publ., Oxford, 1987) p. 262.Google Scholar
  15. [15]
    F. Freund, G.L. Maiti, F. Battlo and M. Baerns, J. Chim. Phys. 87 (1990) 1467.Google Scholar
  16. [16]
    A. Shamsi, Ind. Eng. Chem. Res. 32 (1993) 1877.Google Scholar
  17. [17]
    R. Moros, Computer programme Gendgls, University Leipzig, Germany (1992).Google Scholar
  18. [18]
    D.E. Goldberg, in:Genetic Algorithm in Search, Optimization & Machine Learning (Addison Wesley, Reading, MA, 1989).Google Scholar
  19. [19]
    A. Bielanski and J. Haber, in:Oxygen in Catalysis (Dekker, New York, 1991).Google Scholar
  20. [20]
    J.-L. Dubois and C.J. Cameron, Appl. Catal. 67 (1990) 49.Google Scholar
  21. [21]
    S.C. Reyes, C.P. Kelkar and E. Iglesia, Catal. Lett. 19 (1993) 167.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Dorit Wolf
    • 1
  1. 1.Lehrstuhl für Technische ChemieRuhr-University BochumBochumGermany

Personalised recommendations