Amino Acids

, Volume 1, Issue 2, pp 183–192 | Cite as

Amino acids and the kidney

  • G. A. Young


The kidney has an important role in the metabolism of amino acids and control of plasma concentrations. Reabsorption by the tubules recovers about 70g/day of amino acids, derived from both the diet and metabolism in other tissues. Amino acids regulate haemodynamics and proteolysis and maintain integrity of the kidney. Abnormal plasma and muscle amino acid profiles in chronic renal failure (i.e. low essentials and tyrosine with high nonessentials) first indicated malnutrition, which can be partially corrected by supplementation. The loss of effective kidney tissue and uraemia, in addition to nutrition, have been considered in studies of phenylalanine hydroxylation used to investigate low tyrosine. Investigations in normal kidney have shown that glutamine uptake maintains acid-base homeostasis, glycine and citrulline are removed, and serine and arginine are released into the circulation. These metabolic processes are impaired in chronic renal failure. Uraemia affects most tissues and causes malnutrition, whilst acidosis activates catabolism of amino acids and proteins in muscle. Hyperinsulinaemia probably depresses plasma branchedchain amino acids and particularly valine. These abnormalities are less likely to respond to dietary supplementation.


Amino acids Kidney Nutrition Phenylalanine Tyrosine Uraemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvestrand A, Fürst P, Bergström J (1982) Clin Nephrol 18: 297–305Google Scholar
  2. Alvestrand A Defronzo RA, Smith D, Wahren J (1988) 74: 155–163Google Scholar
  3. Ayling JE, Helfand GD, Pirson WD (1975) Enzyme 20: 6–12Google Scholar
  4. Bergström J, Fürst P, Josephson B, Noree L (1972) Nutr Metab 14: 162–170Google Scholar
  5. Bergström J, Fürst P, Noree L, Vinnars E (1978) Clin Sci Mol Med 54: 51–60Google Scholar
  6. Brenner BM, Meyer TW, Hosletter TH (1982) N Engl J Med 307: 652–659Google Scholar
  7. Brosnan JT (1987) Can J Physiol Pharmacol 65: 2355–2362Google Scholar
  8. El Sayed AA, Haylor J, El Nehas AM (1990) Clin Sci 79: 381–386Google Scholar
  9. Featherstone WR, Rogers QR, Freedland RA (1973) Am J Physiol 224: 127–129Google Scholar
  10. Frimpter GW, Thompson DD, Luckey EH (1961) J Clin Inv: 40: 1208–1216Google Scholar
  11. Fukudo S, Kopple JD (1980) Miner Electrolyte Metab 3: 248–260Google Scholar
  12. Fürst P, Alvestrand A, Bergström J (1980) Am J Clin Nutr 33: 1387–1395Google Scholar
  13. Fürst P (1989) J Am Coll Nutr 8: 310–323Google Scholar
  14. Giordano C, De Pascale C, De Cristofaro G, Capodicasa C, Balestrieri C, Baczyk K (1967) In: Berlyne GM (ed) Nutrition in renal disease. Livingstone, Edinburgh, pp 23–34Google Scholar
  15. Gulyassy PF, Aviram A, Peters J (1970) Arch Int Med 126: 855–859Google Scholar
  16. Hara Y, May RC, Kelly RA, Mitch WE (1987) Kidney Int 32: 808–814Google Scholar
  17. Hirschberg RR, Zipser RD, Slomowitz LA, Kopple JD (1988) Kidney Int 33: 1147–1155Google Scholar
  18. Holt LE, Snyderman SE, Norton PM, Roitman E, Finch J (1963) Lancet ii: 1343–1348Google Scholar
  19. Jones MR, Kopple JD, Swenseid ME (1978) Kidney Int 14: 169–179Google Scholar
  20. Kaufman S (1971) Advanc Enzymol 35: 245–319Google Scholar
  21. Kenny J, Maroux S (1982) Physiol Rev 62: 91–128Google Scholar
  22. Kopple JD (1976) Clinical aspects of uraemia and dialysis, 1st edn. CC Thomas, Springfield Ill, pp 453–489Google Scholar
  23. Kuhlmann MK, Kopple JD (1990) Seminars Nephrol 10: 445–457Google Scholar
  24. Letteri JM, Scipione RA (1974) Nephron 13: 365–371Google Scholar
  25. Lowry M, Hall DE, Brosnan JT (1986) Am J Physiol 250: F649-F658Google Scholar
  26. Mitch WE, May RC, Maroni BJ, Druml W (1989) Kidney Int 36 [Suppl] 27: S205-S207Google Scholar
  27. Mortimore GE, Pösö AR (1987) Ann Rev Nutr 7: 539–564Google Scholar
  28. Murthy LI, Berry HK (1975) Biochem Med 12: 392–397Google Scholar
  29. Owen EE, Robinson RR (1963) J Clin Invest 42: 263–276Google Scholar
  30. Pickford JC, McGale EHF, Aber GM (1973) Clin Chim Acta 48: 77–83Google Scholar
  31. Pitts RF, Damian AC, Macleod MB (1970) Am J Physiol 219: 584–589Google Scholar
  32. Rabkin R, Dahl DC, Mahoney C, Tsao T (1989) Kidney Int 36 [Suppl] 27: S11-S14Google Scholar
  33. Silbernagl S (1988) Phys Reviews 68: 911–1007Google Scholar
  34. Stone WJ, Pitts RF (1967) J Clin Invest 46: 1141–1150Google Scholar
  35. Stonier G, McGale EH, Aber GM (1984) Clin Chim Acta 143: 115–122Google Scholar
  36. Tizianello A, De Ferrari G, Garibotto G, Curreri G, Robaudo C (1980) J Clin Invest 65: 1162–1173Google Scholar
  37. Tizianello A, De Ferrari G, Garibotto G, Robaudo C, Saffioti S, Salvidio G, Paoletti E (1987) Kidney Int 32 [Suppl] 22: S181-S185Google Scholar
  38. Wang M, Vyhmeister I, Swenseid ME, Kopple JD (1975) J Nutr 105: 122–127Google Scholar
  39. Whitehead RG, Milburn TR (1964) Clin Sci 26: 279–289Google Scholar
  40. Windmueller HC, Spaeth AE (1981) Am J Physiol 241: E473-E480Google Scholar
  41. Young GA, Parsons FM (1969) Clin Sci 37: 1–10Google Scholar
  42. Young GA, Parsons FM (1970) Proc Eur Dial Transpl Ass 7: 167–174Google Scholar
  43. Young GA, Parsons FM (1973) Clin Sci 45: 89–97Google Scholar
  44. Young GA, Keogh JB, Parsons FM (1975) Clin Chem Acta 61: 205–213Google Scholar
  45. Young GA, Swanepoel CR, Croft MR et al (1982) Kidney Int 21: 492–499Google Scholar
  46. Young GA, Kopple JD, Lindholm B, Vonesh EF, De Vecchi A, Scalamogna A, Castelnova C, Oreopoulos DG, Harvey Anderson G, Bergstrom J, DiChiro J, Gentile D, Nissenson A, Sakhrani L, Brownjohn AM, Nolph KD, Prowant BF, Algrim CE, Martis L, Serkes KD (1991) Am J Kidney Dis 17: 462–471Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. A. Young
    • 1
  1. 1.The General InfirmaryRenal Research UnitLeedsU.K.

Personalised recommendations