Catalysis Letters

, Volume 38, Issue 1–2, pp 27–32 | Cite as

Decomposition of nitrous oxide in excess oxygen over Co- and Cu-exchanged MFI zeolites

  • Consuelo Montes de Correa
  • Aida Luz Villa
  • Mauren Zapata


The decomposition of nitrous oxide on several Co- and Cu-ZSM-5 zeolite catalysts was studied in the absence and presence of excess oxygen. Also, the effect of methane addition, as well as catalyst steaming in dry and wet feeds is reported. N2O decomposition with no oxygen in the feed was proportional to metal loading on both catalysts. Co-ZSM-5 was much more resistant than Cu-ZSM-5 in excess oxygen. The tolerance of Co-ZSM-5 catalysts to excessive amounts of oxygen is high when Co2+ is stabilized in the zeolite framework and depends on the catalyst method of preparation. The presence of methane with no oxygen in the feed enhanced N2O decomposition while the addition of both methane and oxygen to the feed decreased N2O conversion on all catalysts tested. Co2+ ions stabilized by ZSM-5 framework have high hydrothermal stability in comparison to Cu2+ -exchanged ZSM-5.


nitrous oxide decomposition methane combustion Co-ZSM-5 Cu-ZSM-5 emission control metal exchange ZSM-5 zeolite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.A. Wójtowicz, J.R. Pels and J.A. Moulijn, Fuel Process. Technol. 34 (1993) 1.Google Scholar
  2. [2]
    P.J. Crutzen, in: B. Bolin and R.B. Cook, eds. (Wiley, New York, 1983) pp. 67–112.Google Scholar
  3. [3]
    J.W. Elkins and R. Rossen, Summary Report 1988: Geophysical monitoring for climatic change, NOAAERL, Boulder (1989).Google Scholar
  4. [4]
    J.T. Houghton, G.J. Jenkins and J.J. Ephraums, eds.,Climate Change, The IPCC Scientific Assessment (Press Syndicate of the University of Cambridge, London, 1990).Google Scholar
  5. [5]
    Y. Li and J.N. Armor, Appl. Catal. B 1 (1992) L21.Google Scholar
  6. [6]
    Y. Li and J.N. Armor, Appl. Catal. B 3 (1993) 55.Google Scholar
  7. [7]
    V.P. Shiralkar and A. Clearfield, Zeolites 9 (1983) 363.Google Scholar
  8. [8]
    Y. Li and J.N. Armor, Appl. Catal. B 2 (1993) 239.Google Scholar
  9. [9]
    G.I. Panov, V.Y. Sovolev and A.S. Kharitonov, J. Mol. Catal. 61 (1990) 85.Google Scholar
  10. [10]
    T. Tabata, M. Kokitsu, O. Okada, T. Nakayama, Y. Yasumatsu and H. Sakane, in:Catalyst Deactivation, Stud. Surf. Sci. Catal., Vol. 84, eds. B. Delmon and G.F. Froment (Elsevier, Amsterdam, 1994) p. 410.Google Scholar
  11. [11]
    J. Valyon and K. Hall, J. Catal. 143 (1993) 520.Google Scholar
  12. [12]
    C.M. Fu, V.N. Korchak and W.K. Hall, J. Catal. 68 (1981) 166.Google Scholar
  13. [13]
    J. Leglise, J.O. Petunchi and W.K. Hall, J. Catal. 86 (1984) 392.Google Scholar
  14. [14]
    E.R.S. Winter, J. Catal. 15 (1969) 144.Google Scholar
  15. [15]
    E.R.S. Winter, J. Catal. 19 (1970) 32.Google Scholar
  16. [16]
    G.M. Dhar and V. Srinivasan, Int. J. Chem. Kinet. 14 (1982) 415.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Consuelo Montes de Correa
    • 1
  • Aida Luz Villa
    • 1
  • Mauren Zapata
    • 1
  1. 1.Universidad de AntioquiaMedellinColombia

Personalised recommendations