Catalysis Letters

, Volume 38, Issue 1–2, pp 1–9 | Cite as

The role of alkali cations in zeolite synthesis from silicate solutions containing N,N,N-trimethyl-1-adamantammonium cations

  • C. S. Gittleman
  • A. T. Bell
  • C. J. Radke


Zeolite synthesis from aqueous N,N,N-trimethyl-1-adamantammonium (TMAA+)-alkali (Na+, K+, Rb+, and Cs+) silicate mixtures is studied using X-ray diffraction, elemental analysis, scanning electron microscopy, and29Si magic angle spinning (MAS),1H-13C cross-polarization (CP) MAS and1H-29Si CP MAS NMR spectroscopies. SSZ-24 forms in the presence of potassium cations, and SSZ-31 crystallizes in the presence of sodium cations. This is the first report of SSZ-31 synthesis from Na-TMAA silicate mixtures. Unknown silicates form in the presence of rubidium and cesium cations, whereas no crystalline material is observed in synthesis mixtures devoid of alkali cations. The alkali cations do not appear to serve as templates or void fillers during zeolite crystallization, nor do they stabilize soluble silicate anions which serve as building blocks during zeolite crystallization. Rather, the alkali cations appear to regulate the transformation of the amorphous synthesis gel into either crystalline zeolite or other silicate phases.


zeolite synthesis SSZ-24 SSZ-31 alkali cations N,N,N-1-adamantammonium cation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.D. Chang and A.T. Bell, Catal. Lett. 8 (1991) 305.Google Scholar
  2. [2]
    H. Gies and B. Marler, Zeolites 12 (1992) 42.Google Scholar
  3. [3]
    C.S. Gittleman, A.T. Bell and C.J. Radke, Micropor. Mater. 2 (1994) 145.Google Scholar
  4. [4]
    C.S. Gittleman, S.S. Lee, A.T. Bell and C.J. Radke, Micropor. Mater. 3 (1995) 511.Google Scholar
  5. [5]
    S.L. Burkett and M.E. Davis, J. Phys. Chem. 98 (1994) 4647.Google Scholar
  6. [6]
    S.L. Burkett and M.E. Davis, Chem. Mater. 7 (1995) 920.Google Scholar
  7. [7]
    R. Szostak,Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989) p. 73.Google Scholar
  8. [8]
    A. Araya and B.M. Lowe, Zeolites 4 (1984) 280.Google Scholar
  9. [9]
    A. Natsro and L.B. Sand, Zeolites 3 (1983) 57.Google Scholar
  10. [10]
    A. Erdem and L.B. Sand, J. Catal. 60 (1979) 241.Google Scholar
  11. [11]
    J.B. Nagy, P. Bodart, H. Collette, J. El Hage-Al Asswad, Z. Gabelica, R. Aiello, A. Nastro and C. Pellegrino, Zeolites 8 (1988) 209.Google Scholar
  12. [12]
    K. Tu and R. Xu, in:Zeolites, Synthesis, Structure, Technology and Application, eds. B. Dryaj, S. Hocevar and S. Pejovnik (Elsevier, Amsterdam, 1985) p. 73.Google Scholar
  13. [13]
    R.A. Van Nordstrand, D.S. Santilli and S.I. Zones, in:ACS Symp. Ser., Vol. 368, eds. W.H. Frank and T.E. Whyte Jr. (Am. Chem. Soc., Washington, 1988) p. 236.Google Scholar
  14. [14]
    R. Bialek, W.M. Meier, M. Davis and M.J. Annen, Zeolites 11 (1991) 438.Google Scholar
  15. [15]
    Y. Nakagawa, US Patent 5271922 (1993).Google Scholar
  16. [16]
    Analysis of Geological Samples, Leeman Applications (Leeman Labs, Lowell, 1984).Google Scholar
  17. [17]
    D.M. Ginter, A.T. Bell and C.J. Radke, J. Magn. Reson. 81 (1989) 217.Google Scholar
  18. [18]
    D.A. Torchia, J. Magn. Reson. 30 (1978) 613.Google Scholar
  19. [19]
    C.S. Gittleman, K. Watanabe, A.T. Bell and C.J. Radke, Micropor. Mater., submitted.Google Scholar
  20. [20]
    S.I. Zones, T.V. Harris, A. Rainis and D.S. Santilli, US Patent 5,106,801(1992).Google Scholar
  21. [21]
    Y. Nakagawa and S.I. Zones, in:Synthesis of Microporous Materials, eds. M.L. Occelli and H.E. Robson (Van Nostrand Reinhold, New York, 1992) p. 222.Google Scholar
  22. [22]
    F. Lefebvre, M. Sacerdote-Peronnet and B.F. Mentzen, Compt. Rend. Acad. Sci. Paris, Ser. 2316 (1993) 1549.Google Scholar
  23. [23]
    D.M. Ginter, PhD Thesis, University of California, Berkeley, USA (1991).Google Scholar
  24. [24]
    C.P. Slichter,Principles of Magnetic Resonance (Springer, Berlin, 1980) p. 75.Google Scholar
  25. [25]
    A.V. McCormick, PhD Thesis, University of California, Berkeley, USA (1987).Google Scholar
  26. [26]
    W.M. Hendricks, A.T. Bell and C.J. Radke, J. Phys. Chem. 95 (1991) 9513.Google Scholar
  27. [27]
    E.J.J. Groenen, A.G.T.G. Kortbeek, M. Mackay and O. Sudmeijer, Zeolites 6 (1986) 403.Google Scholar
  28. [28]
    E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. Patton, R.M. Kirchner and J.V. Smith, Nature 271 (1978) 512.Google Scholar
  29. [29]
    J. Depasse and A. Watillon, J. Coll. Interf. Sci. 33 (1970) 431.Google Scholar
  30. [30]
    R.K. Iler,The Chemistry of Silica (Wiley, New York, 1979) p. 666.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • C. S. Gittleman
    • 1
    • 2
  • A. T. Bell
    • 1
    • 2
  • C. J. Radke
    • 1
    • 2
  1. 1.Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations