Measuring geocentric radial coordinates with a non-fiducial GPS network


In this paper we address the problem of estimating the short term precision of the geocentric radial coordinate of a GPS receiver placed on the Earth crust using a non-fiducial approach. The network used in our analysis contains 35 receivers distributed globally. We have analyzed the data with two different strategies: global and regional. In the global strategy the results obtained, which are compatible with those of Heflin et al. (1992) and Blewitt et al. (1992), provide a weighted root mean square of the residuals (wrms) one order of magnitude larger than the formal errors of the individual estimates. Our regional strategy is based on the assumption that errors in the orbit determination induce errors in the receiver positions, correlated up to large scales. This approach allows us to obtain a significant agreement between the wrms and the formal errors.

This is a preview of subscription content, log in to check access.


  1. Ashkenazi V., Bingley R.M., Chang C.C., Dodson A.H., Torres J.A., Boucher C., Fagard H., Caturla J.L., Quiros R., Capdevila J., Calvert J., Baker T.F., Rius A. and Cross P.A. (1994). ”Eurogauge: The West European Tide Gauge Monitoring Project”.Proceeding of the INSMAP 94 Conference, Hannover, Germany, September 1994.

  2. Blewitt G. (1993). ”Advances in Global Positioning System Technology for Geodynamics Investigations: 1978–1992”. Contributions of Space Geodesy to Geodynamics: Technology. Geodynamics Series 25, 195.

    Google Scholar 

  3. Blewitt G., Heflin M.B., Webb F.H., Lindqwister U.J. and Rajendra P.M. (1992). ”Global Coordinates with centimeter accuracy in the International Terrestrial Reference frame using GPS.”Geophysical Research Letters, Vol. 19, No.9, pp. 853–856.

    Article  Google Scholar 

  4. Heflin, M., W. I. Bertiger, G. Blewitt, A. Freedman, K. Hurst, S. M. Lichten, U. J. Lindqwister, Y. Vigue, F. Webb, T. Yunck and J. Zumberge (1992). ”Global Geodesy using GPS without fiducial sites.”Geophysical Research Letters, Vol. 19, No.2, pp. 131–134.

    Article  Google Scholar 

  5. Heflin, M (1993). ”Station Coordinate Analysis Software”, IOM 335.4-93-005 (JPL internal document), Jet Propulsion Laboratory, Pasadena CA.

    Google Scholar 

  6. Lichten, S. and J. S. Border (1987). ”Strategies for High-Precision Global Positioning System Orbit Determination.”Journal of Geophysical Research, Vol. 92, No. B12, pp. 12751–12762.

    Article  Google Scholar 

  7. Malla R.P., Wu S.C. and Lichten S.M. (1993). ”Geocenter Location and Variations in Earth Orientation Using Global Positioning System Measurements.”Journal of Geophysical Research, Vol. 98, No. B3, pp. 4611–4617.

    Article  Google Scholar 

  8. Papoulis A (1965). ”Probability Random Variables and Stochastic Processes”, McGraw-Hill Book Company, New York.

    Google Scholar 

  9. Sovers and Border (1990). Observation model and parameter partials for the JPL geodetic modeling software ”GPSOMC”. JPL Publication 87-21, Rev. 2, JPL, Pasadena, CA, USA.

    Google Scholar 

  10. Torres J.A., Kol M.H., Ashkenazi V., Bingley R.M., Baker T.F., Boucher C., Calvert C., Caturla J.L., Cross P.A., and Rius A. (1994). ”Monitoring Sea Level at Tide Gauges with Space Geodetic Techniques: The Eurogauge Project”.Proceedings of the LITTORAL 94 Conference, Lisbon, Portugal, September 1994.

Download references

Author information



Corresponding author

Correspondence to A. Rius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rius, A., Juan, J.M., Hernández-Pajares, M. et al. Measuring geocentric radial coordinates with a non-fiducial GPS network. Bulletin Géodésique 69, 320–328 (1995).

Download citation


  • Radial Component
  • Formal Error
  • Tide Gauge
  • Correlation Radius
  • Visible Satellite