Bulletin géodésique

, 69:233 | Cite as

Measuring rapid variations in Earth orientation, geocenter and crust with satellite laser ranging

  • P. H. Andersen


This analysis was performed with the GEOSAT software developed at NDRE for high-precision analysis of satellite tracking and VLBI data for geodetic and geodynamic applications. To determine the amplitudes of the tidally coherent daily and sub-daily variations in the Earth's orientation, geocenter, and crust, we have analyzed twelve months of SLR tracking data from the LAGEOS I & II and ETALON I & II satellites, obtained between October 1992 and September 1993. Station coordinates and mean geocenter are determined with an accuracy of 1 to 2 cm. Amplitudes of diurnal and semidiurnal variations in UT1, polar motion, and geocenter are determined with a precision of ~2µts, ~20µas, and 1–3 mm in each component. It is demonstrated that it is possible to determine a one-year continuous high-precision series in UT1 using multi-satellite laser ranging.


Very Long Baseline Interferometry Satellite Laser Range Polar Motion Earth Orientation Parameter Earth Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

8 References

  1. Andersen, P. H. (1986). GEOSAT — a computer program for precise reduction and simulation of satellite tracking data. In proc. of the Fourth Int. Geod. Symp. on Satellite Geodesy, Austin, Texas, April 28 – May 2.Google Scholar
  2. Andersen, P. H., S. Hauge and O. Kristiansen (1993). GPS relative positioning at the level of one part per billion. Bulletin Geodesique, Vol 67, No. 1, pp. 91–106.CrossRefGoogle Scholar
  3. Andersen, P. H. and S. Rekkedal (1994). VLBI data analysis with the GEOSAT software. Paper submitted Nov. 8, 1993, for publication in Bull. Geod.Google Scholar
  4. Andersen, P. H., K. Aksnes, and S. Hauge (1994). Precice ERS-1 Orbit Calculation. Paper submitted Feb. 7, for publication in Bull. Geod.Google Scholar
  5. Andersen, P. H. (1994). High-precision Station Positioning and Satellite Orbit Determination, PhD. thesis, The Norwegian Defence Research Establishment.Google Scholar
  6. Aoki, S., B. Guinot, G. H. Kaplan, H. Kinoshita, D. D. McCarthy, and P. K. Seidelmann (1982). The New Definition of Universal Time, Astron. Astrophys., 105, pp. 359–361.Google Scholar
  7. Aoki, S., and H. Kinoshita (1983). Note on the relation between the equinox and Guinot's non-rotating origin, Celest. Mech., 29, pp. 335–360.CrossRefGoogle Scholar
  8. Christodoulidis, D. C., D. E. Smith, R. G. Williamson and S. M. Klosko (1988). Observed Tidal Breaking in the Earth/Moon/Sun System, Journ. of Geophys. Res. Vol. 93, No. B6, pp. 6216–6236.CrossRefGoogle Scholar
  9. DeMets, C., R. G. Gordon, D. F. Argus and S. Stein (1990). Current Plate Motions, Geophys. J. Int., 101, pp. 425–478.CrossRefGoogle Scholar
  10. de Sitter, W. (1916). On Einstein's theory of gravitation and its astronomical consequences, Mon. Not. Roy. Astron. Soc., 77.Google Scholar
  11. Fukushima, T. (1991). Geodesic Nutation, Astron. Astrophys., 244, pp. L11-L12.Google Scholar
  12. GSFC/CSR (1993). E-mail note on the use of the Joint Gravity Model 1 & 2, NASA Goddard Space Flight Center, Space Geodesy Branch.Google Scholar
  13. Herring, T. A., D. Dong, and R. W. King (1991). Sub-milliarcsecond determination of pole position using Global Positioning data, Geophys. Res. Lett., 18, 1893–1896.CrossRefGoogle Scholar
  14. Herring, T. A. (1993). Diurnal and semidiurnal variations in Earth rotation. Adv. Space. Res., Vol. 13, No. 11, pp. (11)281-(11)290.CrossRefGoogle Scholar
  15. Holdridge, D. B. (1967). An Alternate Expression for Light Time Using General Relativity, JPL Space Program Summary 37-48, III, pp. 2–4.Google Scholar
  16. Huang, C. and J. C. Ries (1987). The effect of geodesic precession in the non-inertial geocentric frame, Technical Memorandum CSR-TM-87-04, Center for Space Research, The University of Texas at Austin.Google Scholar
  17. IERS Annual Report (1992). Observatoire de Paris.Google Scholar
  18. Knocke, P., and J. Ries (1987). Earth radiation pressure effects on satellites, Center for Space Research, The University of Texas at Austin, prepared under contract NAS5-28192.Google Scholar
  19. Lense, J., and H. Thirring (1918). Phys. Z., 19, 156.Google Scholar
  20. Lichten, S. M., S. L. Marcus, and J. O. Dickey (1992). Sub-daily Resolution of Earth rotation measurements with Global Positioning System measurements, Geophys. Res. Lett., 19, 537–540.CrossRefGoogle Scholar
  21. Lieske, J. H., T. Lederle, W. Fricke, and B. Morando (1977). Expression for the Precession Quantities Based Upon the IAU (1976) System of Astronomical Constants, Astron. Astrophys., 58, pp. 1–16.Google Scholar
  22. Lindqwister, U. J., R. S. Gross, S. M. Lichten, and R. J. Muellerschoen (1992). Estimating polar motion subdaily and sub-hourly with the Global Positioning System using data from the GIG'91 experiment (abstract), Eos Trans. AGU, 73(14), Spring Meeting suppl.Google Scholar
  23. Marini, J. W., and C. W. Murray, Jr. (1973). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, Rep. X-591-73-351, Goddard Space Flight Center, Greenbelt, Maryland.Google Scholar
  24. McCarthy, D. D. (1992). IERS Standards. IERS Technical note 13, Observatoire de Paris.Google Scholar
  25. Moyer, T. (1971). Mathematical formulation of the Double Precision Orbit Determination Program (DPODP), JPL-TR-32-1521, Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  26. Newhall, X. X., E. M. Standish, and J. G. Williams (1983). DE 102, a numerically integrated ephemeris of the Moon and the planets spanning forty-four centuries, Astron. Astrophys., 125, 150.Google Scholar
  27. O'Toole, J. W. (1976). CELEST Computer Program for Computing Satellite Orbits, TR-3565, Naval Surface Warfare Center, Dahlgren, Virginia.Google Scholar
  28. Pagiatakis, S. D. (1992). Program LOADSDP for the calculation of ocean load effects. Man. Geod., 1992, Vol 17, Nr. 6, pp. 315–320.Google Scholar
  29. Pavlis, E. C., R. G. Williamson, and D. E. Smith (1988). High resolution polar motion from the LAGEOS tracking (abstract), Eos Trans. AGU, 69(44), 1154.Google Scholar
  30. Pavlis, E. C. (1994). High Resolution EOP Series from Satellite Tracking. Paper presented at the IERS workshop in Paris, March 1994.Google Scholar
  31. Ries, J. C., C. Huang, and M. M. Watkins (1988). Effects of general relativety on a near-Earth satellite in the geocentric and the barycentric reference frames, Phys. Rev. Lett., 61, 903.CrossRefGoogle Scholar
  32. Ries, J. (1989). Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, PhD. thesis, Center for Space Research, Univ. of Texas at Austin.Google Scholar
  33. Scherneck, H. G. (1991). A Parameterized Solid Earth Tide Model and Ocean Tide Loading Effects for Global Geodetic Baseline Measurements, Geophys. J. Int., 106, pp. 677–694.CrossRefGoogle Scholar
  34. Soffel, M. H. (1989). Relativety in Astrometry, Celestial Mechanics and Geodesy, Springer-Verlag.Google Scholar
  35. Sovers, O. J., C. S. Jacobs, and R. S. Gross (1993). Measuring Rapid Ocean Tidal Earth Orientation Variations With Very Long Baseline Interferometry, Journ. of Geophys. Res., Vol. 98, No. B11, pp. 19,959–19,971, Nov. 10.Google Scholar
  36. Sovers, O. J. (1993). Vertical Ocean Loading Amplitudes from VLBI Measurements, to be published in Geophys. Res. Lett.Google Scholar
  37. Tapley, B. D., B. E. Schutz, R. J. Eanes, J. C. Ries, and M. M. Watkins (1993). Lageos Laser Ranging Contributions to Geodynamics, Geodesy, and Orbital Dynamics, In Contributions of Space Geodesy to Geodynamics, Vol. 24, pp. 147–173, the American Geophysical Union.Google Scholar
  38. Wahr, J. M. (1981). The Forced Nutations of an Elliptical, Rotating, Elastic, and Oceanless Earth, Geophys. J. Roy. Astron. Soc., 64, pp. 705–727.Google Scholar
  39. Wahr, J. M., and Z. Bergen (1986). The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate. Geophys. J. R. Astr. Soc. Vol. 87, pp. 633–668.Google Scholar
  40. Watkins, M. M. and R. J. Eanes (1992). High frequency EOP from LAGEOS laser ranging including SEARCH 92 (abstract), Eos Trans. AGU, 73(43), Fall Meeting suppl., 135.Google Scholar
  41. Zhu, S. Y., C. Reigber and F. H. Massmann (1991). Some improvements of the solid earth tide model, Man. Geod., Vol. 16, pp. 215–220.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • P. H. Andersen
    • 1
  1. 1.Norwegian Defence Research EstablishmentKjellerNorway

Personalised recommendations