Skip to main content
Log in

Measuring rapid variations in Earth orientation, geocenter and crust with satellite laser ranging

  • Published:
Bulletin géodésique Aims and scope Submit manuscript

Abstract

This analysis was performed with the GEOSAT software developed at NDRE for high-precision analysis of satellite tracking and VLBI data for geodetic and geodynamic applications. To determine the amplitudes of the tidally coherent daily and sub-daily variations in the Earth's orientation, geocenter, and crust, we have analyzed twelve months of SLR tracking data from the LAGEOS I & II and ETALON I & II satellites, obtained between October 1992 and September 1993. Station coordinates and mean geocenter are determined with an accuracy of 1 to 2 cm. Amplitudes of diurnal and semidiurnal variations in UT1, polar motion, and geocenter are determined with a precision of ~2µts, ~20µas, and 1–3 mm in each component. It is demonstrated that it is possible to determine a one-year continuous high-precision series in UT1 using multi-satellite laser ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

8 References

  • Andersen, P. H. (1986). GEOSAT — a computer program for precise reduction and simulation of satellite tracking data. In proc. of the Fourth Int. Geod. Symp. on Satellite Geodesy, Austin, Texas, April 28 – May 2.

  • Andersen, P. H., S. Hauge and O. Kristiansen (1993). GPS relative positioning at the level of one part per billion. Bulletin Geodesique, Vol 67, No. 1, pp. 91–106.

    Article  Google Scholar 

  • Andersen, P. H. and S. Rekkedal (1994). VLBI data analysis with the GEOSAT software. Paper submitted Nov. 8, 1993, for publication in Bull. Geod.

  • Andersen, P. H., K. Aksnes, and S. Hauge (1994). Precice ERS-1 Orbit Calculation. Paper submitted Feb. 7, for publication in Bull. Geod.

  • Andersen, P. H. (1994). High-precision Station Positioning and Satellite Orbit Determination, PhD. thesis, The Norwegian Defence Research Establishment.

  • Aoki, S., B. Guinot, G. H. Kaplan, H. Kinoshita, D. D. McCarthy, and P. K. Seidelmann (1982). The New Definition of Universal Time, Astron. Astrophys., 105, pp. 359–361.

    Google Scholar 

  • Aoki, S., and H. Kinoshita (1983). Note on the relation between the equinox and Guinot's non-rotating origin, Celest. Mech., 29, pp. 335–360.

    Article  Google Scholar 

  • Christodoulidis, D. C., D. E. Smith, R. G. Williamson and S. M. Klosko (1988). Observed Tidal Breaking in the Earth/Moon/Sun System, Journ. of Geophys. Res. Vol. 93, No. B6, pp. 6216–6236.

    Article  Google Scholar 

  • DeMets, C., R. G. Gordon, D. F. Argus and S. Stein (1990). Current Plate Motions, Geophys. J. Int., 101, pp. 425–478.

    Article  Google Scholar 

  • de Sitter, W. (1916). On Einstein's theory of gravitation and its astronomical consequences, Mon. Not. Roy. Astron. Soc., 77.

  • Fukushima, T. (1991). Geodesic Nutation, Astron. Astrophys., 244, pp. L11-L12.

    Google Scholar 

  • GSFC/CSR (1993). E-mail note on the use of the Joint Gravity Model 1 & 2, NASA Goddard Space Flight Center, Space Geodesy Branch.

  • Herring, T. A., D. Dong, and R. W. King (1991). Sub-milliarcsecond determination of pole position using Global Positioning data, Geophys. Res. Lett., 18, 1893–1896.

    Article  Google Scholar 

  • Herring, T. A. (1993). Diurnal and semidiurnal variations in Earth rotation. Adv. Space. Res., Vol. 13, No. 11, pp. (11)281-(11)290.

    Article  Google Scholar 

  • Holdridge, D. B. (1967). An Alternate Expression for Light Time Using General Relativity, JPL Space Program Summary 37-48, III, pp. 2–4.

    Google Scholar 

  • Huang, C. and J. C. Ries (1987). The effect of geodesic precession in the non-inertial geocentric frame, Technical Memorandum CSR-TM-87-04, Center for Space Research, The University of Texas at Austin.

  • IERS Annual Report (1992). Observatoire de Paris.

  • Knocke, P., and J. Ries (1987). Earth radiation pressure effects on satellites, Center for Space Research, The University of Texas at Austin, prepared under contract NAS5-28192.

  • Lense, J., and H. Thirring (1918). Phys. Z., 19, 156.

    Google Scholar 

  • Lichten, S. M., S. L. Marcus, and J. O. Dickey (1992). Sub-daily Resolution of Earth rotation measurements with Global Positioning System measurements, Geophys. Res. Lett., 19, 537–540.

    Article  Google Scholar 

  • Lieske, J. H., T. Lederle, W. Fricke, and B. Morando (1977). Expression for the Precession Quantities Based Upon the IAU (1976) System of Astronomical Constants, Astron. Astrophys., 58, pp. 1–16.

    Google Scholar 

  • Lindqwister, U. J., R. S. Gross, S. M. Lichten, and R. J. Muellerschoen (1992). Estimating polar motion subdaily and sub-hourly with the Global Positioning System using data from the GIG'91 experiment (abstract), Eos Trans. AGU, 73(14), Spring Meeting suppl.

  • Marini, J. W., and C. W. Murray, Jr. (1973). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, Rep. X-591-73-351, Goddard Space Flight Center, Greenbelt, Maryland.

    Google Scholar 

  • McCarthy, D. D. (1992). IERS Standards. IERS Technical note 13, Observatoire de Paris.

  • Moyer, T. (1971). Mathematical formulation of the Double Precision Orbit Determination Program (DPODP), JPL-TR-32-1521, Jet Propulsion Laboratory, Pasadena, California.

    Google Scholar 

  • Newhall, X. X., E. M. Standish, and J. G. Williams (1983). DE 102, a numerically integrated ephemeris of the Moon and the planets spanning forty-four centuries, Astron. Astrophys., 125, 150.

    Google Scholar 

  • O'Toole, J. W. (1976). CELEST Computer Program for Computing Satellite Orbits, TR-3565, Naval Surface Warfare Center, Dahlgren, Virginia.

    Google Scholar 

  • Pagiatakis, S. D. (1992). Program LOADSDP for the calculation of ocean load effects. Man. Geod., 1992, Vol 17, Nr. 6, pp. 315–320.

    Google Scholar 

  • Pavlis, E. C., R. G. Williamson, and D. E. Smith (1988). High resolution polar motion from the LAGEOS tracking (abstract), Eos Trans. AGU, 69(44), 1154.

    Google Scholar 

  • Pavlis, E. C. (1994). High Resolution EOP Series from Satellite Tracking. Paper presented at the IERS workshop in Paris, March 1994.

  • Ries, J. C., C. Huang, and M. M. Watkins (1988). Effects of general relativety on a near-Earth satellite in the geocentric and the barycentric reference frames, Phys. Rev. Lett., 61, 903.

    Article  Google Scholar 

  • Ries, J. (1989). Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, PhD. thesis, Center for Space Research, Univ. of Texas at Austin.

  • Scherneck, H. G. (1991). A Parameterized Solid Earth Tide Model and Ocean Tide Loading Effects for Global Geodetic Baseline Measurements, Geophys. J. Int., 106, pp. 677–694.

    Article  Google Scholar 

  • Soffel, M. H. (1989). Relativety in Astrometry, Celestial Mechanics and Geodesy, Springer-Verlag.

  • Sovers, O. J., C. S. Jacobs, and R. S. Gross (1993). Measuring Rapid Ocean Tidal Earth Orientation Variations With Very Long Baseline Interferometry, Journ. of Geophys. Res., Vol. 98, No. B11, pp. 19,959–19,971, Nov. 10.

    Google Scholar 

  • Sovers, O. J. (1993). Vertical Ocean Loading Amplitudes from VLBI Measurements, to be published in Geophys. Res. Lett.

  • Tapley, B. D., B. E. Schutz, R. J. Eanes, J. C. Ries, and M. M. Watkins (1993). Lageos Laser Ranging Contributions to Geodynamics, Geodesy, and Orbital Dynamics, In Contributions of Space Geodesy to Geodynamics, Vol. 24, pp. 147–173, the American Geophysical Union.

  • Wahr, J. M. (1981). The Forced Nutations of an Elliptical, Rotating, Elastic, and Oceanless Earth, Geophys. J. Roy. Astron. Soc., 64, pp. 705–727.

    Google Scholar 

  • Wahr, J. M., and Z. Bergen (1986). The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate. Geophys. J. R. Astr. Soc. Vol. 87, pp. 633–668.

    Google Scholar 

  • Watkins, M. M. and R. J. Eanes (1992). High frequency EOP from LAGEOS laser ranging including SEARCH 92 (abstract), Eos Trans. AGU, 73(43), Fall Meeting suppl., 135.

    Google Scholar 

  • Zhu, S. Y., C. Reigber and F. H. Massmann (1991). Some improvements of the solid earth tide model, Man. Geod., Vol. 16, pp. 215–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, P.H. Measuring rapid variations in Earth orientation, geocenter and crust with satellite laser ranging. Bulletin Géodésique 69, 233–243 (1995). https://doi.org/10.1007/BF00806735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806735

Keywords

Navigation