Advertisement

Amino Acids

, Volume 8, Issue 4, pp 353–365 | Cite as

The solid-state catalytic synthesis of tritium labeled amino acids, peptides and proteins

  • Yu. A. Zolotarev
  • E. M. Dorokhova
  • V. N. Nezavibatko
  • Yu. A. Borisov
  • S. G. Rosenberg
  • G. A. Velikodvorskaia
  • L. V. Neumivakin
  • V. V. Zverlov
  • N. F. Myasoedov
Article

Summary

New catalytic reaction between a solid bioorganic compound and activated spillover tritium (ST), based on High-temperature Solid-state Catalytic Isotopic Exchange (HSCIE) was examined. The HSCIE mechanism and determination of the reactivity of hydrogen atoms in amino acids, peptides and proteins was investigated. Quantum mechanical calculations of the reactivity of hydrogen atoms in amino acids in the HSCIE reaction were done. The carbon atom with a greater proton affinity undergoes a greater exchange of hydrogen for tritium in HSCIE. The electrofilic nature of spillover hydrogen in the reaction of HSCIE was revealed. The isotope exchange between ST and the hydrogen of the solid organic compound proceeds with a high degree of configuration retention at the carbon atoms. The HSCIE reaction enables to synthesize tritium labeled proteins with a specific activity of 20–30 mCi/mg and kept biological activity.

Keywords

Amino acids Peptides Proteins Cellulosome Solid-state isotope exchange Spillover tritium Quantum mechanics calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMPAC QCPE program 506Google Scholar
  2. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163: 552–559Google Scholar
  3. Borisov YuA, Zolotarev YuA, Laskatelev EV, Myasoedov NF (1994) Interrelation between the electronic structure of amino acids and their reactivity in solid-state catalytic isotope exchange with deuterium and tritium. Uspekhy Khim (in press)Google Scholar
  4. Chuvilskaya NA, Golovchenko NP, Belokopytov BF, Akimenko VK (1986) Isolation, identification and some physiological properties of Clostridium thermocellum. Appl Biochem Microbiol 22: 800–805Google Scholar
  5. Fleisch T, Aberman R (1977) On the reduction of Ag2S film by hydrogen spillover under ultra high vacuum condition. J Catal 50: 268–278Google Scholar
  6. Gershkovich AA, Kibirev VK (1992) Chemical synthesis of peptides. Naukova Dumka, KievGoogle Scholar
  7. Grabnitz F, Rucknagel KP, Seiss M, Staudenbauer WL (1989) Nucleotide sequence of Clostridium thermocellum bglB gene encoding thermostable beta-glucosidase B: homology to fuginal beta-glucosidases. Mol Gen Genet 217: 70–76Google Scholar
  8. Keren E, Soffer A (1977) Simultaneous electronic and ionic surface conduction of catalyct support: a general mechanism for spillover. J Catal 50: 43–55Google Scholar
  9. Laemmli UK (1970) Clevage of structural proteins during the assembly of the head bacteriophage T4. Nature 227: 680–685Google Scholar
  10. Levy RB, Boudart M (1974) The kinetics and mechanism of spillover. J Catal 32: 304–314Google Scholar
  11. Osterman CA (1981) The studying methods of proteins and nucleic acids. Nauka, Moscow, pp 113–116Google Scholar
  12. Rosenberg SG, Zolotarev YuA, Myasoedov NF (1992) Application of tritium high resolution NMR spectroscopy to analysis of tritium labelled amino acids and peptides. Amino Acids 3: 95–104Google Scholar
  13. Sermon PA, Bond DC (1973) Hydrogen spillover. Catalysis Rev 8: 211–239Google Scholar
  14. Shishkov AV, Neiman LA, Smolyakov VS (1984) The preparation of organic compounds by treatment with atomic tritium. Uspekhi Khim 53: 125–152Google Scholar
  15. Weygand-Hilgetag (1964) Organisch-chemische Experimentier-Kunst. Barth, Leipzig, p 439Google Scholar
  16. Zolotarev YuA, Myasoedov NF, Penkina VI, Petrenik OV, Davankov VA (1981) Resolution of tritium labelled aminoacids racemates by ligand exchange chromatography. J Chromatography 207: 231–237Google Scholar
  17. Zolotarev YuA, Zaitsev DA, Dorochova EM, Myasoedov NF (1988) Ligang-exchange chromatography for analysis and preparative separations of tritium-labelled amino acids. J Radioanal Nucl Chem Art 121: 469–478Google Scholar
  18. Zolotarev YuA, Kozic VS, Dorochova EM, Myasoedov NF (1991a) Tritium incorporation in amino acids by isotope exchange using high-temperature solid-state catalysis. J Labelled Comp 29: 997–1007Google Scholar
  19. Zolotarev YuA, Tatur VYu, Zaitsev DA, Myasoedov NF (1991b) Method for prepering biologically active organic compound labelled with hydrogen isotope. US Patent No. 5 026 909Google Scholar
  20. Zolotarev YuA, Kozic VS, Zaitsev DA, Myasoedov NF (1992) High-temperature solid-state catalytic isotopic exchange with deuterium and tritium. J Radioanal Nucl Chem Art 162: 3–14Google Scholar
  21. Zverlov VV, Velikodvorskaya GA (1990) Cloning the Clostridium thermocellum thermostable laminarinase gene in Escherichia coli: the properties of the enzyme thus produced. Biotechnol Lett 12: 811–816Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Yu. A. Zolotarev
    • 1
  • E. M. Dorokhova
    • 1
  • V. N. Nezavibatko
    • 1
  • Yu. A. Borisov
    • 1
  • S. G. Rosenberg
    • 1
  • G. A. Velikodvorskaia
    • 1
  • L. V. Neumivakin
    • 1
  • V. V. Zverlov
    • 1
  • N. F. Myasoedov
    • 1
  1. 1.Institute of Molecular Genetics Russian Academy of SciencesMoscowRussia

Personalised recommendations