Advertisement

Amino Acids

, Volume 2, Issue 1–2, pp 87–95 | Cite as

Porcine pancreatic lipase-catalized enantioselective hydrolysis of N-protected amino acid methyl-esters

  • F. M. Bautista
  • J. M. Campelo
  • A. García
  • D. Luna
  • J. M. Marinas
Article

Summary

A preparative-scale enantioselective hydrolysis of racemic methyl esters of several N-protected amino acid has been carried out by using crude porcine pancreatic lipase (Triacylglycerol lipase, EC 3.1.1.3) PPL as a hydrolytic enzyme. In all cases 50% of the racemic methyl ester was hydrolysed to the N-protected L-amino acid with high yield and high optical purity.

Hydrolysis rates were very close related not only to the amino acid structure but also to the steric and/or electronic nature of the ester and N-protecting groups. Thus, the very convenient ester methyl group can be enantioselectively hydrolysed with PPL when N-protecting group is a carbonyl derivative, as it is the usual benzoyl group.

Keywords

Amino acids Porcine pancreatic lipase Asymetric resolution of amino acids PPL-enantioselective methyl ester hydrolysis PPL-resolution of amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bautista FM, Campelo JM, García A, García E, Luna D, Marinas JM (1989) Spanish Patent P. 8903384Google Scholar
  2. Cotterill IC, Macfarlane ELA, Roberts SM (1988) J Chem Soc Perkin Trans I: 3387–3389Google Scholar
  3. Chen CS, Sih DJ (1989) Angew Chem Int Engl 28: 695–707Google Scholar
  4. Chênevert R, Thiboutot S (1989) Synthesis: 444–446Google Scholar
  5. Fryzuk MD, Bosnich B (1977) J Am Chem Soc 99: 6262–6267Google Scholar
  6. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1989) Vogel's textbook of practical organic chemistry, 5th edn. Longman, London, p 1156Google Scholar
  7. Ghogare A, Kumar GS (1989) J Chem Soc Chem Commun: 1533–1535Google Scholar
  8. Goodman M, Levine L (1964) J Am Chem Soc 86: 2918–2922Google Scholar
  9. Guanti G, Baufi L, Narisano E (1989) Tetrahedron Lett 30: 2697–2698Google Scholar
  10. Guibé-Jampel E, Rousseau G, Salaun J (1987) J Chem Soc Chem Commun: 1080–1081Google Scholar
  11. Hermann P, Salewski L (1983) In: Blaha K, Malon P (eds) Peptides 1982. de Gruyter, Berlin, pp 399–402Google Scholar
  12. Hsu S, Wu S, Wang Y (1990) Tetrahedron Lett 31: 6403–6406Google Scholar
  13. Jones JB (1986) Tetrahedron 42: 3351–3403Google Scholar
  14. Kirchner G, Scollar MP, Klibanow AM (1985) J Am Chem Soc 107: 7072–7076Google Scholar
  15. Klibanov AM (1990) Acc Chem Res 23: 114–120Google Scholar
  16. Łankiewicz L, Kasprzykowski F, Grzonka Z, Kettmann U, Hermann P (1989) Bioorganic Chem 17: 275–280Google Scholar
  17. Miyazawa T, Iwanaga H, Ueji S, Yamada T, Kuwata S (1989) Chem Lett: 2219–2222Google Scholar
  18. Ojima I, Kogure T, Yoda N (1980) J Org Chem Soc 45: 4728–4739Google Scholar
  19. Ramage GR, Simonsen JL (1935) J Chem Soc: 532–535Google Scholar
  20. Ramaswamy S, Morgan B, Oehischpager AC (1990) Tetrahedron Lett 31: 3405–3408Google Scholar
  21. Vogel AI (1974) A textbook of practical organic chemistry, 3rd edn. Longman, London, p 584 and 973Google Scholar
  22. Wallace JS, Reda KB, Williams ME, Morrow CJ (1990) J Org Chem 55: 3544–3546Google Scholar
  23. Wong CH (1990) Science 244: 1145–1152Google Scholar
  24. Yamada H, Shimizu S (1988) Angew Chem Int Engl 27: 622–624Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F. M. Bautista
    • 1
  • J. M. Campelo
    • 1
  • A. García
    • 1
  • D. Luna
    • 1
    • 2
  • J. M. Marinas
    • 1
  1. 1.Department of Organic ChemistryCórdoba UniversityCordobaSpain
  2. 2.Departamento de Química OrgánicaFacultad de Ciencias, Avda. San Alberto MagnoCordobaSpain

Personalised recommendations