Advertisement

Catalysis Letters

, Volume 28, Issue 2–4, pp 161–166 | Cite as

The role of Rh on Pt-based catalysts: structure sensitive NO + H2 reaction on Pt(110) and Pt(100) and structure insensitive reaction on Rh/Pt(110) and Rh/Pt(100)

  • Akira Sasahara
  • Hiroyuki Tamura
  • Ken -ichi Tanaka
Article

Abstract

The catalytic activity of the Pt(110) surface for the reaction of NO + H2 was much less than that of the Pt(100) surface. However, the catalytic activity of the Rh deposited Pt(1l0) surface was almost equal to that of the Rh deposited Pt(100) surface. That is, the catalytic reaction of NO + H2 on Pt(110) and Pt(100) surfaces is highly structure sensitive, but it changes to structure insensitive by the deposition of Rh atoms. These results are rationalized by formation of an active overlayer on the Pt(110) and Pt(100) surfaces, which is very analogous to the Rh-O/Pt-layer formed on Rh/Pt(100), Pt/Rh(100) and Pt-Rh(100) alloy surfaces during catalysis. The formation of the common overlayer of Rh-O/Pt-layer during catalysis is responsible for the structure insensitive catalysis of Rh deposited Pt-based catalysts, which is an important role of Rh in a three way catalyst.

Keywords

Pt(110) Pt(100) Rh/Pt(110) Rh/Pt(100) activity structure sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.L. Bernasek, W.K. Siekhaus and G.A. Somorjai, Phys. Rev. Lett. 30 (1975) 1202;Google Scholar
  2. [1]a
    M. Salmeron, R.J. Gale and G.A. Somorjai, J. Chem. Phys. 67 (1977) 5324;Google Scholar
  3. [1]b
    D.R. Strongin, J. Carrazza, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 213.Google Scholar
  4. [2]
    D.W. Goodman, J. Vac. Sci. Technol. 20 (1982) 522;Google Scholar
  5. [2]a
    D.W. Goodman, R.D. Kelley, T.E. Madey and J.T. Yates Jr., J. Catal. 63 (1980) 226;Google Scholar
  6. [2]b
    C.T. Campbell and M.T. Paffett, Surf. Sci. 143 (1984) 513.Google Scholar
  7. [3]
    H. Hirano and K. Tanaka, J. Catal. 133 (1992) 461.Google Scholar
  8. [4]
    T. Yamada and K. Tanaka, J. Am. Chem. Soc. 113 (1991) 1173;Google Scholar
  9. [4]a
    H. Hirano, T. Yamada, K. Tanaka, J. Siera, P. Cobden and B.E. Nieuwenhuys, Surf. Sci. 262 (1989) 97.Google Scholar
  10. [5]
    H. Hirano, T. Yamada, K. Tanaka, J. Siera and B.E. Nieuwenhuys, Vacuum 41 (1990) 134;Google Scholar
  11. [5]a
    H. Hirano, T. Yamada, K. Tanaka, J. Siera and B.E. Nieuwenhuys, Surf. Sci. 222 (1989) L804;Google Scholar
  12. [5]b
    H. Hirano, T. Yamada, K. Tanaka, J. Siera and B.E. Nieuwenhuys, Surf. Sci. 226 (1990) 1.Google Scholar
  13. [6]
    M. Taniguchi, E. Kuzembaev and K. Tanaka, Surf. Sci. 290 (1993) L711.Google Scholar
  14. [7]
    H. Tamura, A. Sasahara and K. Tanaka, Surf. Sci. Lett. 303 (1994) L379.Google Scholar
  15. [8]
    M.W. Lesley and L.D. Schmidt, Surf. Sci. 155 (1985) 215.Google Scholar
  16. [9]
    Th. Fink, J.-P. Dath, M.R. Bassett, R. Imbihl and G. Ertl, Surf. Sci. 245 (1991) 96.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Akira Sasahara
    • 2
  • Hiroyuki Tamura
    • 1
    • 2
  • Ken -ichi Tanaka
    • 2
  1. 1.Wakayama Reaserch LaboratoryKAO Co.Wakayama 640Japan
  2. 2.The Institute for Solid State PhysicsThe University of TokyoTokyoJapan

Personalised recommendations