Amino Acids

, Volume 3, Issue 1, pp 53–68 | Cite as

Further contribution to the study of corticostriatal glutamatergic and nigrostriatal dopaminergic interactions within the striatal network: an in vivo voltammetric investigation

  • C. Forni
  • N. Dusticier
  • A. Nieoullon


In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.


Amino acids Excitatory amino-acid NMDA Dopamine Striatum In vivo voltammetry 









3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid


α-amino-3-hydroxy-5-metylisoxazole-4-propionic acid


aminophosphonovaleric acid


dihydroxyphenylacetic acid


homovanillic acid


dopamine-cAMP-regulated phosphoprotein 32


cerebrospinal fluid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbeito L, Chéramy A, Godeheu G, Desce JM, Glowinski J (1990) Eur J Neurosci 2: 304–311Google Scholar
  2. Butcher SP, Liptrot J, Arbuthnott GW (1991) Neurosci Lett 122: 245–248Google Scholar
  3. Carlsson M, Carlsson A (1990) TINS 13: 272–276Google Scholar
  4. Carter CJ, Pycock CJ (1980) Brain Res 192: 163–176Google Scholar
  5. Carter CJ, L'Heureux R, Scatton B (1988) J Neurochem 51: 462–468Google Scholar
  6. Chéramy A, Romo R, Godeheu G, Baruch P, Glowinski J (1986) Neuroscience 19: 1081–1090Google Scholar
  7. Clow DW, Jhamandas K (1988) J Pharmacol Exp Ther 248: 722–728Google Scholar
  8. Dusticier N, Nieoullon A (1987) Neurochem Int 10: 275–280Google Scholar
  9. El Ganouni S, Forni C, Nieoullon A (1987) Brain Res 404: 239–256Google Scholar
  10. Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS (1990) J Neural Transm 2: 91–100Google Scholar
  11. Errami M, Nieoullon A (1988) J Neurochem 51: 579–586Google Scholar
  12. Forni C, Nieoullon A (1984) Brain Res 297: 11–20Google Scholar
  13. Forni C, Brundin P, Strecker RE, El Ganouni S, Bjorklund A, Nieoullon A (1989) Exp Brain Res 76: 75–87Google Scholar
  14. Fuxe K, Agnati LF (1991) Volume transmission in the brain. Novel mechanisms for neural transmission. Adv Neuroscience 1: 1–624Google Scholar
  15. Giorguieff MF, Kemel ML, Glowinski J (1977) Neurosci Lett 6: 73–77Google Scholar
  16. Girault JA, Halpain S, Greengard P (1990) TINS 13: 325–326Google Scholar
  17. Glick SD (1972) Europ J Pharmacol 20: 351–355Google Scholar
  18. Hassler R, Hang P, Nitsch C, Kim JS, Paik K (1982) J Neurochem 38: 1087–1098Google Scholar
  19. Herrera-Marschitz M, Goiny M, Utsumi H, Ferre S, Guix T, Ungerstedt U (1990) In: Lubec G, Rosenthal GA (eds) Amino acids, chemistry, biology and medicine. ESCOM Science, Leiden, pp 599–604Google Scholar
  20. Herrera-Marschitz M (1991) In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum Press, New York, pp 357–362Google Scholar
  21. Imperato A, Honoré T, Jensen LH (1990) Brain Res 530: 223–228Google Scholar
  22. Jhamandas K, Marien M (1987) Br J Pharmacol 90: 641–650Google Scholar
  23. Jones MW, Kilpatrick IC, Phillipson OT (1988) Brain Res 475: 8–20Google Scholar
  24. Kabuto H, Yokoi I, Mizukawa K, Mori A (1989) Neurochem Res 14: 1075–1080Google Scholar
  25. Kashihara K, Hamamura T, Okumura K, Otsuki S (1990) Brain Res 528: 80–82Google Scholar
  26. Konig JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower part of the brain stem. Williams and Wilkins, BaltimoreGoogle Scholar
  27. Krebs MO, Desce JM, Kemel ML, Gauchy C, Godeheu G, Chéramy A, Glowinski J (1991a) J Neurochem 56: 81–85Google Scholar
  28. Krebs MO, Kemel ML, Gauchy C, Desban M, Glowinski J (1989) Europ J Pharmacol 166: 567–570Google Scholar
  29. Krebs MO, Trovero F, Desban M, Gauchy C, Glowinski J, Kemel ML (1991b) J Neurosci 11: 1256–1262Google Scholar
  30. Leviel V, Gobert A, Guibert B (1990) Neurosci 39: 305–312Google Scholar
  31. Mehta AK, Ticku MK (1990) Life 46: 37–42Google Scholar
  32. Moghaddam B, Gruen RJ (1991) Brain Res 544: 329–330Google Scholar
  33. Moghaddam B, Gruen RJ, Roth RH, Bunney BS, Adams RN (1990) Brain Res 518: 55–60Google Scholar
  34. Nieoullon A, Chéramy A, Glowinski J (1978) Brain Res 145: 69–83Google Scholar
  35. Nieoullon A, Kerkerian L, Dusticier N (1983) Exp Brain Res [Suppl]7: 54–65Google Scholar
  36. Rao TS, Cler JA, Mick SJ, Emmet MR, Farah JM, Contreras PC, Iyengar S, Wood PL (1991) J Neurochem 56: 907–913Google Scholar
  37. Roberts PJ, Sharif NA (1978) Brain Res 157: 391–395Google Scholar
  38. Roberts PJ, Mc Bean GJ, Sharif NA, Thomas EM (1982) Brain Res 235: 83–91Google Scholar
  39. Samuel D., Errami M, Nieoullon A (1990) J Neurochem 54: 1926–1933Google Scholar
  40. Scatton B, Worms P, Lloyd KG, Bartholini G (1982) Brain Res 232: 331–343Google Scholar
  41. Shimizu N, Duan S, Hori T, Oomura Y (1990) Brain Res Bull 25: 99–102Google Scholar
  42. Snell LD, Johnson KM (1986) J Pharmacol Exp Ther 238: 938–946Google Scholar
  43. Wang JKT (1991) J Neurochem 57: 819–822Google Scholar
  44. Weihmuller FB, O'Dell SJ, Cole BN, Marshall JF (1991) Brain Res 549: 230–235Google Scholar
  45. Westerink BHC (1985) Neurochem Int 7: 221–227Google Scholar
  46. Worms P, Willigens MT, Continsouza-Blanc D, Lloyd KG (1985) Europ J Pharmacol 113: 53–59Google Scholar
  47. Zetterström T, Sharp T, Collin AK, Ungerstedt U (1988) Europ J Pharmacol 148: 327–334Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. Forni
    • 1
  • N. Dusticier
    • 1
  • A. Nieoullon
    • 1
  1. 1.Neurochemistry UnitFunctional Neurosciences Laboratory, CNRSMarseilleFrance

Personalised recommendations