Advertisement

Letters in Mathematical Physics

, Volume 30, Issue 3, pp 241–250 | Cite as

Algebraic deformation program on minimal nilpotent orbit

  • D. Arnal
  • H. Benamor
  • B. Cahen
Article

Abstract

We construct an algebraic star product on the minimal nilpotent coadjoint orbit of a simple complex Lie group with a Lie algebra which is not of typeAn. According to the deformation program, we study the representations of the Lie algebra associated to this orbit.

Mathematics Subject Classifications (1991)

17B35 17B37 22E46 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnal, D., Benamor, H., Benayadi, S., and Pinczon, G., Une algèbre de Lie non semi-simple rigide et sympathique:H 1(g) =H 2(g) =H 0(g, g) =H 1(g, g) =H 2(g, g) = {0},CR Acad. Sci. Paris Sér. I Math. 315, 261–263 (1992).Google Scholar
  2. 2.
    Arnal, D., Cahen, M., and Gutt, S., Deformations on coadjoint orbits,J. Geom. Phys. 3, 327–351 (1986).Google Scholar
  3. 3.
    Arnal, D. and Cortet, J. C., Nilpotent Fourier transform and applications,Lett. Math. Phys. 9, 25–34 (1985).Google Scholar
  4. 4.
    Arnal, D. and Cortet, J. C., Représentations des groupes exponentiels,J. Funct. Anal. 92(1), 103–135 (1990).Google Scholar
  5. 5.
    Barbasch, D. and Vogan, D. A., Unipotent representations of complex semisimple groups,Ann. Math. 121, 41–110 (1985).Google Scholar
  6. 6.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization,Ann. Phys. 110, 61–151 (1978).Google Scholar
  7. 7.
    Cahen, M. and Gutt, S., Produits * sur les orbites des groupes semi simples de rang 1,CR Acad. Sci. Paris Sér. I Math. 296, 821–823 (1983).Google Scholar
  8. 8.
    Dixmier, J.,Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.Google Scholar
  9. 9.
    Fronsdal, C., Some ideas about quantization,Rep. Math. Phys. 15(1), 111–145 (1978).Google Scholar
  10. 10.
    Folland, C. B.,Harmonic Analysis in Phase Space, Ann. Math. Stud. 122, Princeton Univ. Press, Princeton, NJ, 1989.Google Scholar
  11. 11.
    Garfinkle, D., A new construction of Joseph ideal, PhD Thesis, MIT, 1992.Google Scholar
  12. 12.
    Joseph, A., The minimal orbit in a simple Lie algebra and its associated maximal ideal,Ann. Sci. École Norm. Sup. (4),9, 1–30 (1976).Google Scholar
  13. 13.
    Kirillov, A. A.,Eléments de la théorie des représentations, Ed. Mir, 1974.Google Scholar
  14. 14.
    Rothschild, L. P. and Wolf, J. A., Representations of semi simple groups associated to nilpotent orbits,Ann. Sci. École Norm. Sup. (4),7, 155–174 (1974).Google Scholar
  15. 15.
    Vogan, D. A.,The Orbit Method and Primitive Ideals for Semi-simple Lie Algebras, Canad. Math. Soc. Conf. Proc. Vol. 5 (1986).Google Scholar
  16. 16.
    Vogan, D. A.,Noncommutative Algebras and Unitary Representations, Proc. Symp. Pure Math. Vol. 48 (1988).Google Scholar
  17. 17.
    Wolf, J. A.,Representations Associated to Minimal Coadjoint Orbits, Lecture Notes in Math. 676, Springer, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. Arnal
    • 1
  • H. Benamor
    • 1
  • B. Cahen
    • 1
  1. 1.Département de Mathématiques et d'Informatique, URA CNRS 399Université de Metz, Ile de SaulcyMetz Cedex 01France

Personalised recommendations