Advertisement

Amino Acids

, Volume 4, Issue 1–2, pp 157–167 | Cite as

High-performance liquid chromatographic resolution of (R, S)-α-alkyl-α-amino acids as diastereomeric derivatives

  • H. Brückner
  • S. Zivny
Article

Summary

A number (27) of racemicα-alkyl-α-amino acids (AAA) were derivatized either witho-phthaldialdehyde (OPA) in combination withN-t-butoxycarbonyl-L-cysteine (Boc-Cys) orN-acetyl-L-cysteine (Ac-Cys), or withN2-(5-fluoro-2,4-dinitrophenyl)-L-alanine amide (Marfey's reagent). The resolution of the diastereoisomers formed was investigated by reversed-phase (C18) high-performance liquid chromatography (HPLC) using gradient elution conditions employing sodium phosphate buffers of pH 7.2 together with acetonitrile, and fluorescence detection at 344 nm (excitation) and 443 nm (emission) for the OPA/Boc-Cys or OPA/Ac-Cys derivatives. For the diastereomers formed by derivatization with Marfey's reagent triethylammonium phosphate buffers of pH 3.0 (pH 7.2 for acidic AAA) together with acetonitrile, and u.v. detection at 340 nm were used. Whereas with Marfey's reagent all diastereomers of AAA showed complete, or almost complete, resolution, only 8, or 11, respectively of the diastereomers formed by derivatization with OPA/Boc-Cys or OPA/Ac-Cys were resolved under the chromatographic conditions used.

Keywords

Amino acids Nonprotein amino acids α-Alkyl-α-amino acids High-performance liquid chromatography Enantiomer separation o-Phthaldialdehyde N-Acetyl-L-cysteine N-t-Butoxycarbonyl-L-cysteine Marfey's reagent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altherr W, Heimgartner H (1991) Synthesis of segments of the peptaibol trichotoxin A-50 (G) In: Giralt E, Andreu D (eds) Peptides 1990. Proceedings of the Twenty-first European Peptide symposium, September 2–8, 1990, Platja d'Aro, Spain. Escom Leiden, pp 76–77Google Scholar
  2. Brückner H, Bosch I, Graser T, Fürst P (1987) Determination of non-proteinα-alkyl-α-amino acids by reversed-phase high-performance liquid chromatography in comparison with ion-exchange and capillary gas chromatography. J Chromatogr 386: 251–272Google Scholar
  3. Brückner H, Currle M (1989) Methodologies for the synthesis of naturally occurring “peptaibol” antibiotics and conformationally designed analogs. In: Marraud M, Aubry A, Vitoux B (eds) Second forum on peptides. Series Colloque INSERM, vol 175. John Libbey Eurotext, London, pp 251–255Google Scholar
  4. Brückner H, Gah C (1991) High-performance liquid chromatographic separation of DL-amino acids derivatized with chiral variants of Sanger's reagent. J Chromatogr 555: 81–95Google Scholar
  5. Brückner H, Keller-Hoehl C (1990) HPLC separation of DL-amino acids derivatized withN 2-(5-fluoro-2,4-dinitrophenyl)-L-amino acid amides. Chromatographia 30: 621–629Google Scholar
  6. Brückner H, Langer M (1991) Gas chromatographic separation of stereoisomeric esters ofα-amino acids andα-alkyl-α-amino acids on chiral stationary phases. J Chromatogr 542: 161–172Google Scholar
  7. Brückner H, Maisch J, Reinecke C, Kimonyo A (1991) Use ofα-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics. Screening ofHypocrea. Amino Acids 1: 251–257Google Scholar
  8. Buck RH, Krummen K (1987) High-performance liquid chromatographic determination of enantiomers of amino acids and amino alcohols after derivatization witho-phthaldialdehyde and various chiral mercaptanes. J Chromatogr 387: 255–265PubMedGoogle Scholar
  9. Cann JR, London RE, Unkefer CJ, Vavrek RJ, Stewart JM (1987) CD-n.m.r. study of the solution conformation of bradykinin analogs containingα-aminoisobutyric acid. Int J Peptide Protein Res 29: 486–496Google Scholar
  10. Cordopatis P, Theodoropoulos D (1983) Synthesis of [1-Aib]-angiotensin II, an analogue with higher potency than [1-Asn, 5-Val]-angiotensin II. Experientia 39: 106–108PubMedGoogle Scholar
  11. Coste J, Frerot E, Dufour M-N, Pantaloni A, Jouin P (1991) Easy coupling of Aib with the reagents PyBOP® and PyBroP. In: Giralt E, Andreu D (eds) Peptides 1990, Proceedings of the Twenty-first European Peptide Symposium, September 2–8, 1990, Platja d'Aro, Spain. Escom, Leiden, pp 676–77Google Scholar
  12. Cronin JR, Pizzarello S, Gandy WE (1979) Amino acid analysis witho-phthaldialdehyde detection: Effects of reaction temperature and thiol on fluorescence yield. Anal Biochem 93: 174–179PubMedGoogle Scholar
  13. Duchateau A, Crombach M, Kamphuis J, Boesten WHJ, Schoemaker HE, Meijer EM (1989) Determination of the enantiomers ofα-H-α-amino acids,α-alkyl-α-amino acids and the corresponding amides by high-performance liquid chromatography. J Chromatogr 471: 263–270Google Scholar
  14. Kruizinga WH, Bolster J, Kellogg RM, Kamphuis J, Boesten WHJ, Meijer EM, Schoemaker HE (1988) Synthesis of optically pureα-alkylatedα-amino acids and a single step method for enantiomeric excess determination. J Org Chem 53: 1826–1827Google Scholar
  15. Lork KD, Unger KR, Brückner H, Hearn MTW (1989) Retention behaviour of paracelsin peptides on reversed-phase silicas with varying n-alkyl chain length and ligand density. J Chromatogr 476: 135–145PubMedGoogle Scholar
  16. Lubec B, Herkner KR, Brückner H, Höger H, Gialamas J, Adamiker D, Lubec G (1991) Biological activity of alpha-alkyl-amino acids. Amino Acids 1: 289–292Google Scholar
  17. Marfey P (1984) Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49: 591–596Google Scholar
  18. Nimura N, Kinoshita T (1986)o-PhthaldialdehydeN-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid enantiomers and its application to conventional amino acid analysis. J Chromatogr 352: 169–177Google Scholar
  19. Payne JW, Jakes R, Hartley BS (1970) The primary structure of alamethicine. Biochem J 117: 757–766PubMedGoogle Scholar
  20. Przybylski M, Dietrich I, Manz I, Brückner H (1984) Elucidation of structure and microheterogeneity of the polypeptide antibiotics paracelsin and trichotoxin A-50 by fast atom bombardment mass spectrometry in combination with selectivein situ hydrolysis. Biomed Mass Spectrom 11: 569–582Google Scholar
  21. Riggs TR, Walker LM (1960) Growth hormone stimulation of amino acid transport into rat tissuesin vivo. J Biol Chem 235: 3603–3607PubMedGoogle Scholar
  22. Schmitt H, Jung G (1985) Total synthesis of theα-helical eicosapeptide antibiotic alamethicin. Liebigs Ann Chem 1985: 321–344Google Scholar
  23. Schöllkopf U (1985) Asymmetric syntheses of non-proteinogenic amino acids. In: Deber CM, Hruby VJ, Kopple KD (eds) Peptides structure and function. Proceedings of the Ninth American Peptide Symposium, Toronto, Canada, June 23–28, 1985, Pierce Chemical Comp., Rockford, IL, pp 427–436Google Scholar
  24. Seebach D, Boes M, Naef R, Schweizer WB (1985) Alkylation of amino acids without loss of the optical activity: Preparation ofα-substituted proline derivatives. A case of self-reproducibility of chirality. J Am Chem Soc 105: 5390–5398Google Scholar
  25. Smirk H (1963) Hypotensive action of methyldopa. Br Med J 1963: 146–151Google Scholar
  26. Toniolo C, Benedetti E (1991) The polypeptide 310-helix. Trends Biol Sci 16: 350–353Google Scholar
  27. Weinstein S, Grinberg N (1985) Enantiomeric separation of underivatizedα-methyl-α-amino acids by high-performance liquid chromatography. J Chromatogr 318: 117–121Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. Brückner
    • 1
  • S. Zivny
    • 1
  1. 1.Institute of Food TechnologyUniversity of HohenheimStuttgart 70Federal Republic of Germany

Personalised recommendations