Molecular Biology Reports

, Volume 7, Issue 4, pp 203–207 | Cite as

Protein kinase activity tightly bound to liver polysomes

  • Y. Cenatiempo
  • A. J. Cozzone
  • A. Genot
  • J. P. Reboud


Rat liver polysomes washed with 0.5–1.5 M KCl at 37°C keep a constant protein kinase activity revealed only by auto-phosphorylation of ribosomal proteins. The enzyme catalyzes the transfer of the γ-phosphate group from ATP to serine (75%) but also to threonine residues (25%). It is released when polysomes are dissociated into subunits using centrifugation through a sucrose gradient containing a high K+/Mg++ ratio. Its properties have been compared with those of the two other enzymatic activities which are, in contrast, washed out during salt treatment of polysomes. After release upon polysome dissociation, this third activity is able to phosphorylate histone II A. Protection of the enzyme in the polysome structure against salt treatment, suggests that it is located at the junction of the two subunits.


Sucrose Enzymatic Activity Protein Kinase Serine Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RubinC. S. & RosenO. M., 1975. Annu. Rev. Biochem. 44: 831–887.Google Scholar
  2. 2.
    GressnerA. M. & WoolI. G., 1974. J. Biol. Chem. 249: 6917–6925.Google Scholar
  3. 3.
    TsurugiK., CollatzE., TodokoroK., UlbrichN., LightfootN. H. & WoolI. G., 1978. J. Biol. Chem. 253: 946–955.Google Scholar
  4. 4.
    Krystosek, A., Bitte, C. F., Cawthon, M. L. & Kabat, D., 1974. In: Ribosomes (Nomura, M., Tissières, A. and Lengyel, P., eds.) pp. 855–870, Cold Spring Harbor.Google Scholar
  5. 5.
    Wool, I. G. & Stöffler, G., 1974. In: Ribosomes (Nomura, M., Tissières, A. and Lengyel, P., eds.) pp. 417–460, Cold Spring Harbor.Google Scholar
  6. 6.
    GenotA., ReboudJ. P., CenatiempoY. & CozzoneA. J., 1978. FEBS Lett. 86: 103–107.Google Scholar
  7. 7.
    CenatiempoY., CozzoneA. J., GenotA. & ReboudJ. P., 1978. Biochimie 60: 813–816.Google Scholar
  8. 8.
    GenotA., ReboudJ. P., CenatiempoY. & CozzoneA. J., 1979. FEBS Lett. 99: 261–264.Google Scholar
  9. 9.
    WalshD. A., AshbyC. D., GonzalesC., CalkinsD., FischerE. H. & KrebsE. G., 1971. J. Biol. Chem. 246: 1977–1985.Google Scholar
  10. 10.
    BlobelG. & SabatiniD., 1971. Proc. Natl. Acad. Sci. USA 68: 390–394.Google Scholar
  11. 11.
    ShertonC. C. & WoolI. G., 1974. Mol. Gen. Genet. 135: 97–112.Google Scholar
  12. 12.
    MadjarJ. J., ArpinM., BuissonM. & ReboudJ. P., 1979. Mol. Gen. Genet. 171: 121–134.Google Scholar
  13. 13.
    BickleT. & TrautR. R., 1971. J. Biol. Chem. 246: 6828–6834.Google Scholar
  14. 14.
    KabatD., 1970. Biochemistry 9: 4160–4175.Google Scholar
  15. 15.
    TasP. W. L. & SellsB. H., 1978. Eur. J. Biochem. 92: 271–278.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • Y. Cenatiempo
    • 1
  • A. J. Cozzone
    • 1
  • A. Genot
    • 2
  • J. P. Reboud
    • 2
  1. 1.Department of Molecular BiologyUniversity of LyonVilleurbanne CÉDEXFrance
  2. 2.Department of Medical BiochemistryUniversity of LyonVilleurbanne CÉDEXFrance

Personalised recommendations