Skip to main content
Log in

Mechanism of plastic deformation and fracture of sintered iron containing dispersed titania particles

  • Powder Metallurgical Materials, Parts, and Coatings
  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. I. Trefilov and V. F. Moiseev, Dispersed Particles in Refractory Metals [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  2. V. I. Trefilov, I. K. Pokhodnia, and V. F. Moiseev, “Ductile-brittle transition in refractory metal alloys containing a dispersed second phase,” Phys. Status Solidi (a),59, 843–851 (1980).

    Google Scholar 

  3. K. Tanaka, T. Mori, and T. Nakamura, “Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix,” Philos. Mag.,21, No. 170, 267–279 (1970).

    Google Scholar 

  4. K. Tanaka, T. Mori, and T. Nakamura, “Decohesion at the interface of a spherical fibre, or disk inclusion,” Trans. Iron Steel Inst. Jpn.,11, No. 6, 383–389 (1971).

    Google Scholar 

  5. S. H. Goods and L. M. Brown, “The nucleation of cavities by plastic deformation,” Acta Metall.,27, No. 1, 1–15 (1979).

    Google Scholar 

  6. Sh. Kh. Khannanov, “Size effect in the fracture of dispersion-hardened alloys,” Probl. Prochn., No. 4, 105–109 (1978).

    Google Scholar 

  7. J. Gurland, “Observations on the fracture of cementite particles in a spheroidized 1.05% C steel at room temperature,” Acta Metall.,20, No. 5, 735–741 (1972).

    Google Scholar 

  8. V. N. Gridnev, Yu. Ya. Meshkov, S. P. Oshkaderov, and V. I. Trefilov, Physical Principles of the Electrothermic Strengthening of Steel [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  9. J. Friedel, “Chemical strengthening by coherent precipitated particles,” in: Physics of Strength and Ductility [Russian translation], Metallurgiya, Moscow (1972), pp. 152–187.

    Google Scholar 

  10. J. Friedel, Dislocations, Pergamon (1964).

  11. A. D. Vasil'ev, I. S. Malashenko, V. I. Trefilov, et al., “Effect of plastic deformation on the structure and character of fracture of molybdenum,” Fiz. Met. Metalloved.,43, No. 3, 640–644 (1977).

    Google Scholar 

  12. A. D. Vasil'ev, I. S. Malashenko, V. P. Pisarenko, et al., “Effect of brittle-to-tough transition on the character of fracture of polycrystalline molybdenum,” Probl. Prochn., No. 4, 91–97 (1977).

    Google Scholar 

  13. I. F. Ashby, “On Orowan stress,” in: Physics of Strength and Ductility [Russian translation], Metallurgiya, Moscow (1972), pp. 88–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 7(247), pp. 69–75, July, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidik, A.N., Drachinskii, A.S., Ivanova, I.I. et al. Mechanism of plastic deformation and fracture of sintered iron containing dispersed titania particles. Powder Metall Met Ceram 22, 574–578 (1983). https://doi.org/10.1007/BF00805657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805657

Keywords

Navigation