Advertisement

Catalysis Letters

, Volume 39, Issue 3–4, pp 191–196 | Cite as

CO-induced decomposition of small Pt particles in K-LTL zeolite

  • B. L. Mojet
  • D. C. Koningsberger
Article

Abstract

Reduced Pt/K-LTL has been studied with XAFS spectroscopy before and after CO admission at room temperature. The results of the EXAFS data-analysis show that after reduction very small platinum metal particles are present consisting of five to six atoms. CO admission at room temperature leads to complete decomposition of the platinum metal particles and the formation of a platinum carbonyl cluster most probably stabilised by the zeolite walls. Modelling shows that the platinum carbonyl cluster just fits inside the pores of the zeolite-LTL. Analysis of the white line intensities of platinum LII and LIII X-ray absorption edges reveals that after reduction and in the presence of chemisorbed hydrogen the platinum metal particles in Pt/K-LTL have 0.12% more d-band vacancies than bulk platinum metal. This value increases to 0.34% after CO admission implyingπ-backdonation from platinum to CO, a positive charge on Pt in the newly formed cluster or a combination of both. The results of this study have a large impact on the interpretation of existing literature FTIR CO data obtained on Pt/K-LTL. The results question the validity of CO chemisorption carried out to determine the dispersion of very small platinum particles.

Keywords

Pt-CO complexes EXAFS spectroscopy Pt/K-LTL CO chemisorption on Pt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.R. Bernard, in:Proc. 5th Int. Congr. on Zeolites, ed. L.V.C. Rees (Heyden, London, 1980) p. 686.Google Scholar
  2. [2]
    M. Vaarkamp, F.S. Modica, J.T. Miller and D.C. Koningsberger, J. Catal. 144 (1993) 611.Google Scholar
  3. [3]
    B.L. Mojet, M.J. Kappers, J.T. Miller and D.C. Koningsberger,Proc. 11th ICC, accepted.Google Scholar
  4. [4]
    A. de Mallmann and D. Barthomeuf, Stud. Surf. Sci. Catal. 46 (1989) 429.Google Scholar
  5. [5]
    W.J. Han, A.B. Kooh and R.F. Hicks, Catal. Lett. 18 (1993) 193.Google Scholar
  6. [6]
    L.M. Kustov, D. Ostgard and W.M.H. Sachtler, Catal. Lett. 9 (1991) 121.Google Scholar
  7. [7]
    M.J. Kappers, J.T. Miller, D.C. Koningsberger, J. Phys. Chem., in press.Google Scholar
  8. [8]
    M.J. Kappers, M. Vaarkamp, J.T. Miller, F.S. Modica, J.H. van der Maas and D.C. Koningsberger, Catal. Lett. 21 (1993) 235.Google Scholar
  9. [9]
    A.Yu. Stakheev, E.S. Shpiro, N.I. Jaeger and G. Schulz-Ekloff, Catal. Lett. 34 (1995) 293.Google Scholar
  10. [10]
    A. de Mallmann and D. Barthomeuf, Catal. Lett. 5 (1990) 293.Google Scholar
  11. [11]
    H. Bischoff, N.I. Jaeger, G. Schulz-Ekloff and L. Kubelkova, J. Mol. Catal. 80 (1993) 95.Google Scholar
  12. [12]
    J.-R. Chang, Z. Xu, S.K. Purnell and B.C. Gates, J. Mol. Catal. 80 (1993) 95.Google Scholar
  13. [13]
    G.-J. Li, T. Fujimoto, A. Fukuoka and M. Ichikawa, Catal. Lett. 12 (1992) 171.Google Scholar
  14. [14]
    M. Vaarkamp, B.L. Mojet, M.J. Kappers, J.T. Miller and D.C. Koningsberger, J. Phys. Chem. 99 (1995) 16067.Google Scholar
  15. [15]
    M. Vaarkamp, I. Dring, R.J. Oldman, E.A. Stern and D.C. Koningsberger, Phys. Rev. B 50 (1994) 7872.Google Scholar
  16. [16]
    J.W. Cook Jr. and D.E. Sayers, J. Appl. Phys. 52 (1981) 5024.Google Scholar
  17. [17]
    F.W.H. Kampers, PhD Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (1989).Google Scholar
  18. [18]
    F. van Zon, PhD Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (1988).Google Scholar
  19. [19]
    B. Lengeler, J. Phys. (Paris) C 8 47 (1986) 75.Google Scholar
  20. [20]
    M. Vaarkamp, B.L. Mojet and D.C. Koningsberger, to be published.Google Scholar
  21. [21]
    J.B.A.D. van Zon, D.C. Koningsberger, H.F.J. van't Blik and D.E. Sayers, J. Chem. Phys. 82 (1985) 5742.Google Scholar
  22. [22]
    F.W. Lytle, R.B. Greegor, B.C. Marques, V.A. Biebesheimer, D.R. Sandstrom, J.A. Horsley, G.H. Via and J.H. Sinfelt, ACS Symp.Ser. 288 (1985) 280.Google Scholar
  23. [23]
    M.G. Samant and M. Boudart, J. Phys. Chem. 95 (1991) 4070.Google Scholar
  24. [24]
    B.J. McHugh, G. Larsen and G.L. Haller, J. Phys. Chem. 94 (1990) 8621.Google Scholar
  25. [25]
    A.N. Mansour, J.W. Cook Jr. and D.E. Sayers, J. Phys. Chem. 88 (1984) 2330.Google Scholar
  26. [26]
    G.J. Li, T. Fujimoto, A. Fukuoka and M. Ichikawa, J. Chem. Soc. Chem. Commun. (1991) 133.Google Scholar
  27. [27]
    H.F.J. van't Blik, J.B.A.D. van Zon, T. Huizinga, J.C. Vis, D.C. Koningsberger and R. Prins, J. Am. Chem. Soc. 107 (1985) 3139.Google Scholar
  28. [28]
    L.L. Sheu, H. Knözinger and W.M.H. Sachtler, J. Am. Chem. Soc. 111 (1989) 8125.Google Scholar
  29. [29]
    G. Schulz-Ekloff, R.J. Lipski, N.I. Jaeger and P. Hulstede, Catal. Lett. 30 (1995) 65.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • B. L. Mojet
    • 1
  • D. C. Koningsberger
    • 1
  1. 1.Debye Institute, Department of Inorganic Chemistry and CatalysisUtrecht UniversityTB UtrechtThe Netherlands

Personalised recommendations