Catalysis Letters

, Volume 39, Issue 3–4, pp 173–178 | Cite as

Gas phase synthesis of MTBE on fluoride-modified zeolites

  • A. A. Nikolopoulos
  • A. Kogelbauer
  • J. G. GoodwinJr.
  • G. Marcelin
Article

Abstract

The gas phase synthesis of MTBE was studied using three series of zeolites modified by ion-exchange with ammonium fluoride, the parent materials being HY, H-mordenite, and HZSM-5. Modification of zeolites by fluoride-exchange was found to enhance the MTBE synthesis activity for all three types of zeolites without impairing their excellent selectivity to MTBE. The mechanism of activity enhancement by fluoride-modification appears to be related to the formation of extra-lattice Al rather than the presence of fluoride-ions.

Keywords

etherification H-mordenite HY HZSM-5 MTBE fluoride zeolites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.D. Chase,Catalytic Conversions of Synthesis Gas and Alcohols to Chemicals (Plenum Press, New York, 1984) p. 307.Google Scholar
  2. [2]
    D. Seddon, Catal. Today 15 (1992) 1.Google Scholar
  3. [3]
    G.J. Hutchings, C.P. Nicolaides and M.S. Scurrell, Catal. Today 15 (1992) 23.Google Scholar
  4. [4]
    E.J. Chang and M.S. Leiby, Hydrocarbon Processing 71 (2) (1992) 41.Google Scholar
  5. [5]
    F.L. Potter, Fuel Reformulation 1 (1) (1991) 22.Google Scholar
  6. [6]
    J.E. Peeples, Fuel Reformulation 1 (1) (1991) 27.Google Scholar
  7. [7]
    G.H. Unzelman, Fuel Reformulation 1 (2) (1991) 50.Google Scholar
  8. [8]
    G.A. Mills and E.E. Ecklund, CHEMTECH 19 (1989) 627.Google Scholar
  9. [9]
    W.J. Piel and R.X. Thomas, Hydrocarbon Processing 69 (7) (1990) 68.Google Scholar
  10. [10]
    M.B. Haigwood, Fuel Reformulation 1 (1) (1991) 52.Google Scholar
  11. [11]
    T. Takesono and Y. Fujiwara, US Patent 4,182,913 (1980).Google Scholar
  12. [12]
    P. Chu and G.H. Kühl, Ind. Eng. Chem. Res. 26 (1987) 365.Google Scholar
  13. [13]
    A.A. Nikolopoulos, R. Oukaci, J.G. Goodwin Jr. and G. Marcelin, Catal. Lett. 27 (1994) 149.Google Scholar
  14. [14]
    R. Le Van Mao, R. Carli, H. Ahlafi and V. Ragaini, Catal. Lett. 6 (1990) 321.Google Scholar
  15. [15]
    I. Rodriguez-Ramos, A. Guerrero-Ruiz and J.L.C. Fierro, Prepr. Div. Pet. Chem. Am. Chem. Soc. 36 (1990) 804.Google Scholar
  16. [16]
    K.A. Becker and S. Kowalak, J. Chem. Soc. Faraday Trans. I 81 (1985) 1161.Google Scholar
  17. [17]
    S. Kowalak, React. Kinet. Catal. Lett. 27 (2) (1985) 441.Google Scholar
  18. [18]
    K.A. Becker and S. Kowalak, J. Chem. Soc. Faraday Trans. I 82 (1986) 2151.Google Scholar
  19. [19]
    K.A. Becker and S. Kowalak, J. Chem. Soc. Faraday Trans. I 83 (1987) 535.Google Scholar
  20. [20]
    A.K. Ghosh and R.A. Kydd, J. Catal. 103 (1987) 399.Google Scholar
  21. [21]
    P.V. Shertukde, W.K. Hall, J.-M. Dereppe and G. Marcelin, J. Catal. 139 (1993) 468.Google Scholar
  22. [22]
    R. Von Ballmoos and J.B. Higgins, Zeolites 10 (1990) 313S.Google Scholar
  23. [23]
    N.Y. Chen, W.E. Garwood and F.G. Dwyer,Shape Selective Catalysis in Industrial Applications (Dekker, New York, 1989) p. 13.Google Scholar
  24. [24]
    A.A. Nikolopoulos, A. Kogelbauer, J.G. Goodwin Jr. and G. Marcelin, Appl. Catal. A 119 (1994) 69.Google Scholar
  25. [25]
    A.A. Nikolopoulos, A. Kogelbauer, J.G. Goodwin Jr. and G. Marcelin, J. Catal. 158 (1996) 76.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • A. A. Nikolopoulos
    • 1
  • A. Kogelbauer
    • 1
  • J. G. GoodwinJr.
    • 1
  • G. Marcelin
    • 1
  1. 1.Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations