A single-surface yield function for geomaterials

Summary

The article outlines a seven-parametric yield function for geomaterials such as soils and rocks. Proceeding from a geometric representation in the principal stress space, the yield surface exhibits a closed shape, thus reflecting the sensitivity of the plastic response of this type of media to hydrostatic stresses. The yield function is able to describe the effects of primary yielding, as well as of isotropic and kinematic hardening. In addition the failure envelope contains an open cone when the number of material parameters is reduced from seven to five.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    de Boer, R.: On plastic deformation of soils. Int. J. Plasticity 4 (1988) 371–391

    Google Scholar 

  2. 2.

    de Boer, R.;Dresenkamp, H.-T.: Constitutive equations for concrete in failure state. J. Eng. Mech. 115 (1989) 1591–1608

    Google Scholar 

  3. 3.

    de Boer, R.; Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen der Universität Essen 40, 1986

  4. 4.

    Desai, C. S.: Single surface yield and potential function plasticity models: A review. Computers and Geotechnics 7 (1989) 319–335

    Google Scholar 

  5. 5.

    Desai, C. S.: Modelling and testing: Implementation of numerical models and their application in practice. In: Desai, C. S.; Gioda, G. (eds.) Numerical Methods and Constitutive Modelling in Geomechanics, pp. 1–168. Wien: Springer 1990

    Google Scholar 

  6. 6.

    Dresenkamp. H.-T.: Stoffgleichungen für spröde und granulare Stoffe im Bruchzustand. Dissertation, Universität Essen, 1987

  7. 7.

    Drucker, D. C.;Prager, W.: Soil mechanics and plastic analysis of limit design. Appl. Math. 10 (1952) 157–165

    Google Scholar 

  8. 8.

    Ehlers, W.: Poröse Median-ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen der Universität Essen 47, 1989

  9. 9.

    Ehlers, W.: Toward finite theories of liquid-saturated elasto-plastic porous media. Int. J. Plasticity 7 (1991) 433–475

    Google Scholar 

  10. 10.

    Ehlers, W.: Compressible, incompressible and hybrid two-phase models in porous media theories. In: Angel, Y. C. (ed.) Anisotropy and Inhomogeneity in Elasticity and Plasticity, AMD-Vol. 158, pp. 25–38. New York: ASME 1993

    Google Scholar 

  11. 11.

    Green, R. J.: A plasticity theory for porous solids. Int. J. Mech. Sci. 14 (1972) 215–224

    Google Scholar 

  12. 12.

    Kim, M. K.;Lade, P. V.: Single hardening constitutive model for frictional materials, I. Plastic potential function. Computers and Geotechnics 5 (1988) 307–324

    Google Scholar 

  13. 13.

    Lade, P. V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct. 13 (1977) 1019–1035

    Google Scholar 

  14. 14.

    Lade, P. V.: Three-dimensional stress-strain behavior and modeling of soils. Schriftenreihe des Instituts für Grundbau, Wasserwesen und Verkehrswesen, Serie Grundbau, Heft 4, Ruhr-Universität Bochum, 1979

  15. 15.

    Lade, P. V.;Duncan, J. M.: Cubical triaxial tests on cohesionless soil. Proc. ASCE: SM. J. Soil Mech. Found. Div. 99 (1973) 793–812

    Google Scholar 

  16. 16.

    Lade, P. V.;Kim, M. K.: Single hardening constitutive model for friction materials, II. Yield criterion and plastic work contours. Computers and Geotechnics 6 (1988) 13–29

    Google Scholar 

  17. 17.

    Lade, P. V.;Kim, M. K.: Single hardening constitutive model for friction materials, III. Comparison with experimental data. Computers and Geotechnics 6 (1988) 31–47

    Google Scholar 

  18. 18.

    Desai, C. S.;Salami, M. R.: Constitutive model for rocks. J. Geotech. Eng. 113 (1987) 407–423

    Google Scholar 

  19. 19.

    Roscoe, K. H.;Burland, J. B.: On the generalized stress-strain behaviour of “wet” clay. In: Heyman, J., Leckie, F. A. (eds.): Engineering Plasticity, pp. 535–609. Cambridge: Univ. Press 1968

    Google Scholar 

  20. 20.

    Schad, H.: Nichtlineare Stoffgleichungen für Böden und ihre Verwendung bei der numerischen Analyse von Grundbauaufgaben. Mitteilung des Baugrundinstituts Stuttgart, Heft 10, Universität Stuttgart, 1979

  21. 21.

    Thamm, B.: Anfangssetzungen und Anfangsporenwasserüberdrücke eines normalverdichteten wassergesättigten Tones. Mitteilungen des Baugrundinstituts Stuttgart, Heft 1, Universität Stuttgart, 1974

Download references

Author information

Affiliations

Authors

Additional information

Dedicated to F. G. Kollmann on the occasion of his 60th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ehlers, W. A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995). https://doi.org/10.1007/BF00805464

Download citation

Key words

  • Porous media
  • geomaterials
  • yielding
  • hardening
  • failure
  • cohesion
  • phase change