Basic Research in Cardiology

, Volume 87, Issue 3, pp 227–238 | Cite as

Allopurinol-enhanced myocardial protection does not involve xanthine oxidase inhibition or purine salvage

  • D. J. Chambers
  • A. Takahashi
  • S. M. Humphrey
  • D. M. Harvey
  • D. J. Hearse
Original Contributions

Summary

Isolated working rat hearts were subjected to aerobic perfusion (25 min), cardioplegic infusion (3 min), global ischemia (30 min at 37°C) and reperfusion (35 min). Measurements of myocardial xanthine oxidase and dehydrogenase activity, together with various adenine nucleotides and metabolites, were made at defined stages of the protocol (n=6/group). Allopurinol pretreatment (20 mg/kg body wt/day for 3 days) improved the postischemic recovery of cardiac function; thus, aortic flow (a representative index) recovered to 68.8±4.2% compared with 53.2±2.3% in untreated controls (p<0.05). In fresh tissue, allopurinol pretreatment inhibited xanthine dehydrogenase activity by 73.1% (from 11.9±0.5 to 3.2±0.8 mIU/g wet wt: p<0.05) and xanthine oxidase activity by 95.2% (from 8.3±1.2 to 0.4±0.2 mIU/g wet wt: p<0.05); however, this inhibition was not maintained during perfusion. During reperfusion, myocardial xanthine dehydrogenase and oxidase activity was reduced by 40–60% (p<0.05) in both allopurinol pretreated and control hearts. Tissue content of creatine phosphate, adenosine triphosphate and catabolites, NAD and inorganic phosphate were not different in allopurinol pretreated or control hearts during either ischemia or reperfusion. This study does not support the concept that allopurinol protects the rat heart during ischemia and reperfusion by inhibition of xanthine oxidase activity or by conservation of purines. It appears that allopurinol achieves its protective effects by some, as yet undefined, mechanism.

Key words

Allopurinol xanthinedehydrogenase/oxidase activity adeninenucleotides myocardialprotection normothermicglobalischemia cardioplegia freeradicals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi H, Motomatsu K, Yara I (1979) Effect of allopurinol (zyloric) on patients undergoing open heart surgery. Jap Cir J 43:396–401Google Scholar
  2. 2.
    Akizuki S, Yoshida S, Chambers DE, Eddy LJ, Parmley LF, Yellon DM, Downey JM (1985) Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed-chest dogs with small infarcts. Cardiovasc Res 19:686–692Google Scholar
  3. 3.
    Arnold WL, Dewall RA, Kezdi P, Zwart HHJ (1980) The effect of allopurinol on the degree of early myocardial ischemia. Am Heart J 99:614–624Google Scholar
  4. 4.
    Beckman JS, Parks DA, Pearson JD, Marshall PA, Freeman BA (1989) A sensitive fluorometric assay for measuring xanthine dehydrogenase and xanthine oxidase in tissues. Free Rad Biol Med 6:607–615Google Scholar
  5. 5.
    Chambers DJ, Braimbridge MV, Hearse DJ (1987) Free radicals and cardioplegia: allopurinol and oxypurinol reduce myocardial injury following ischemic arrest. Ann Thorac Surg 44:291–297Google Scholar
  6. 6.
    Chambers DJ, Braimbridge MV, Hearse DJ (1991) Perfusate calcium: effect on cardiac stability and response to ischemia and reperfusion. Can J Cardiol 7:410–418Google Scholar
  7. 7.
    Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152Google Scholar
  8. 8.
    Charlat ML, O'Neill PG, Egan JM, Abernathy DR, Michael LH, Myers ML, Roberts R, Bolli R (1987) Evidence for a pathogenetic role of xanthine oxidase in the “stunned” myocardium. Am J Physiol 252:H566-H577Google Scholar
  9. 9.
    Cunningham SK, Keaveny TV, Fitzgerald P (1974) Effect of allopurinol on tissue ATP, ADP and AMP concentrations in renal ischaemia. Br J Surg 61:562–565Google Scholar
  10. 10.
    Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS (1987) Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Res Comm 148:314–319Google Scholar
  11. 11.
    Dewall RA, Vasko KA, Stanley EL, Kezdi P (1971) Responses of the ischemic myocardium to allopurinol. Am Heart J 82:362–370Google Scholar
  12. 12.
    Downey JM, Miura T, Eddy LJ, Cahmbers DE, Mellert T, Hearse DJ, Yellon DM (1987) Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart. J Mol Cell Cardiol 19:1058–1060Google Scholar
  13. 13.
    Eddy LJ, Stewart JR, Jones HP, Engerson TD, McCord JM, Downey JM (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253:H709-H711Google Scholar
  14. 14.
    Edwards NL, Recker D, Airozo D, Fox IH (1981) Enhanced purine salvage during allopurinol therapy: important pharmacologic property in humans. J Lab Clin Med 98:673–683Google Scholar
  15. 15.
    Grum CM, Ketai LH, Myers CL, Shlafer M (1987) Purine efflux after cardiac ischemia: relevance to allopurinol cardioprotection. Am J Physiol 252:H368-H373Google Scholar
  16. 16.
    Gudbjarnason S, Mathes P, Ravens KG (1970) Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1:325–339Google Scholar
  17. 17.
    Hearse DJ, Braimbridge MV, Jynge P (1981) Protection of the ischemic myocardium: Cardioplegia. Raven Press, New YorkGoogle Scholar
  18. 18.
    Hearse DJ (1983) Myocardial cyclic AMP determinations: the importance of rapidity of sample freezing. J Mol Cell Cardiol 15:653–657Google Scholar
  19. 19.
    Holliss DG, Humphrey SM, Morrison HA, Seelye RN (1984) Reverse phase HPLC for rapid comprehensive measurements of nucleotides, nucleosides and bases of the myocardial adenine pool. Anal Lett 17:2047–2065Google Scholar
  20. 20.
    Humphrey SM, Holliss DG, Seelye RN (1985) Myocardial adenine pool depletion and recovery of mechanical function following ischemia. Am J Physiol 248:H644-H651Google Scholar
  21. 21.
    Kehrer JP, Piper HM, Sies H (1987) Xanthine oxidase is not responsible for reoxygenation injury in isolated-perfused rat heart. Free Rad Res Comm 3:69–78Google Scholar
  22. 22.
    Kinsman JM, Murry CE, Richard VJ, Jennings RB, Reimer KA (1988) The xanthine oxidase inhibitor oxypurinol does not limit infarct size in a canine model of 40 minutes of ischemia with reperfusion. J Am Coll Cardiol 121:209–217Google Scholar
  23. 23.
    Markley HG, Faillace LA, Mezey E (1973) Xanthine oxidase activity in brain. Biochem Biophys Acta 309:23–31Google Scholar
  24. 24.
    McCord JM, Roy RS (1982) The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol 60:1346–1352Google Scholar
  25. 25.
    McCord JM (1985) Oxygen-derived free radicals in pre-ischemic tissue injury. N Eng J Med 312:159–163Google Scholar
  26. 26.
    Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JMC (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers. Febs Letters 213:23–28Google Scholar
  27. 27.
    Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in hearts of pigs, guinea pigs, rabbits, rats and human. Basic Res Cardiol 82:486–492Google Scholar
  28. 28.
    Myers CL, Weiss SJ, Kirsh MM, Shepard BM, Shlafer M (1986) Effects of supplementing hypothermic crystalloid cardioplegic solution with catalase, superoxide dismutase, allopurinol or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J Thorac Cardiovasc Surg 91:281–289Google Scholar
  29. 29.
    Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9–15Google Scholar
  30. 30.
    Peterson DA, Kelly B, Gerrard JM (1986) Allopurinol can act as an electron transfer agent. Is this relevant during reperfusion injury? Biochem Biophys Res Comm 137:76–79Google Scholar
  31. 31.
    Reimer KA, Jennings RB (1985) Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation 71:1069–1075Google Scholar
  32. 32.
    Sollevi A, Schmidt W, Jansson E, Bomfim V, Kaijser L (1987) Adenine nucleotide degradation in the human myocardium during cardioplegia. Cardiovasc Res 21:358–361Google Scholar
  33. 33.
    Spieckerman PG, Kettler DF (1974) Effect of anesthesia on myocardial tolerance to ischemia. Int Anesth Clin 12:51–81Google Scholar
  34. 34.
    Stanley EL, Kezdi P, Smith T (1971) Allopurinol, a generalized coronary vasodilator. Circulation 43 (Suppl II):II-229Google Scholar
  35. 35.
    Stewart JR, Crute SL, Loughlin V, Hess ML, Greenfield LJ (1985) Prevention of free radical-induced myocardial reperfusion injury with allopurinol. J Thorac Cardiovasc Surg 90:68–72Google Scholar
  36. 36.
    Tabayashi K, Suzuki Y, Nagamine S, Ito Y, Sekino Y, Mohri H (1991) A clinical trial of allopurinol (Zyloric) for myocardial protection. J Thorac Cardiovasc Surg 101:713–718Google Scholar
  37. 37.
    Van Belle H, Goosens F, Wynants J (1987) Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am J Physiol 252:H886-H893Google Scholar
  38. 38.
    Werns SW, Grum CM, Ventura A, Lucchesi BR (1987) Effects of allopurinol or oxypurinol on myocardial reperfusion injury. Circulation 76 (Suppl IV):IV-197Google Scholar

Copyright information

© Steinkopff-Verlag 1992

Authors and Affiliations

  • D. J. Chambers
    • 1
  • A. Takahashi
    • 1
  • S. M. Humphrey
    • 2
  • D. M. Harvey
    • 1
  • D. J. Hearse
    • 1
  1. 1.Cardiovascular Research, Rayne InstituteSt. Thomas' HospitalLondonUK
  2. 2.Dept. of PathologyUniversity of Auckland School of MedicineAucklandNew Zealand

Personalised recommendations